Saltar al contenido
Merck
  • Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials.

Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials.

Journal of pharmaceutical and biomedical analysis (2015-01-13)
Etil Guzelmeric, Irena Vovk, Erdem Yesilada
RESUMEN

Brewed tea of chamomile flowers (Matricaria recutita L.) (Asteraceae) has been extensively consumed for centuries due to either its pleasant taste or medicinal purposes. On the other hand, the major problem is difficulty in distinguishing the genuine specimen when supplying chamomile through nature-picking. Consequently flowers of other Asteraceae members resembling to chamomile in appearance may frequently be practiced by lay people or marketed in spice shops or bazaars. Evidently detection of such adulterations plays a vital role in terms of public health to avoid risk of toxicity (i.e. pyrazolidin alkaloids) and ineffective treatments (lack or insufficient concentration of the active constituents). This work presents either development and validation of a high performance thin-layer chromatographic (HPTLC) method for apigenin 7-O-glucoside which is one of the active markers in chamomile flowers or its application for the fingerprint discrimination of chamomile-like materials i.e. Anthemis spp., Bellis spp., Chrysanthemum sp. and Tanacetum sp. gathered by local people assuming as chamomile. Separation was performed on the silica gel 60 NH2 F254s HPTLC plates using the developing solvent system of ethyl acetate-formic acid-acetic acid-water (30:1.5:1.5:3, v/v/v/v). The proposed HPTLC method may also be a leading guide for the quality assessment of chamomile tea products on the market.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Diclorometano, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetato de etilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Ácido acético, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Diclorometano, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Hidróxido de sodio, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Acetato de etilo, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Ácido acético, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Hidróxido de sodio, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Hidróxido de sodio solution, 50% in H2O
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetato de etilo, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Diclorometano, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Hexano, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexano, suitable for HPLC, ≥95%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Butanona, ACS reagent, ≥99.0%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, for molecular biology
Sigma-Aldrich
Hidróxido de sodio solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Alcohol isopropílico, meets USP testing specifications