Saltar al contenido
Merck

SML3068

Sigma-Aldrich

PSEM308 hydrochloride

≥98% (HPLC)

Sinónimos:

5-Methyl-3,4,14-triazapentacyclo[12.2.2.14,7.02,13.011,19]nonadeca-2,7(19),8,10-tetraene hydrochloride, 5-Methyl-5,8,9,10,11a,12-hexahydro-4H-8,11-ethanopyrido[3′,2′:3,4]diazepino[6,7,1-hi]indole hydrochloride, PSEM 308 hydrochloride, PSEM308 hydrochloride, Pharmacologically selective effector molecule 308, hydrochloride

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula empírica (notación de Hill):
C17H21N3 · HCl
Peso molecular:
303.83
Número MDL:
Código UNSPSC:
12352200
NACRES:
NA.77

Nivel de calidad

Ensayo

≥98% (HPLC)

Formulario

powder

condiciones de almacenamiento

desiccated

color

white to beige

solubilidad

DMSO: 2 mg/mL, clear (warmed)

temp. de almacenamiento

2-8°C

cadena SMILES

CC1CC2=CC=CC3=C2N1N=C(C4CCN5CC4)C5C3.Cl

Acciones bioquímicas o fisiológicas

SEM308 is a pharmacologically selective effector molecule (PSEM) that acts as a selective agonist in vitro and in vivo for chimeric pharmacologically selective actuator modules (PSAMs) composed of nAChR α7 ligand-binding domain (LBD) with L141F or L141F/Y115F mutation fused to the ion pore domain (IPD) of a ligand-gated ion channel (LGIC), including glycine receptor (PSAML141F-GlyR & PSAML141F/Y115F-GlyR) and 5-HT3 (PSAML141F/Y115F-5-HT3).

Código de clase de almacenamiento

11 - Combustible Solids

Clase de riesgo para el agua (WGK)

WGK 3

Punto de inflamabilidad (°F)

Not applicable

Punto de inflamabilidad (°C)

Not applicable


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

Lo sentimos, en este momento no disponemos de COAs para este producto en línea.

Si necesita más asistencia, póngase en contacto con Atención al cliente

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Maria Soledad Esposito et al.
Nature, 508(7496), 351-356 (2014-02-04)
Translating the behavioural output of the nervous system into movement involves interaction between brain and spinal cord. The brainstem provides an essential bridge between the two structures, but circuit-level organization and function of this intermediary system remain poorly understood. Here
Kajana Satkunendrarajah et al.
Nature, 562(7727), 419-422 (2018-10-12)
Dysfunctional breathing is the main cause of morbidity and mortality after traumatic injury of the cervical spinal cord1,2 and often necessitates assisted ventilation, thus stressing the need to develop strategies to restore breathing. Cervical interneurons that form synapses on phrenic
Akila Chandrasekar et al.
Cerebral cortex (New York, N.Y. : 1991), 29(6), 2701-2715 (2018-07-10)
Excessive excitation has been hypothesized to subsume a significant part of the acute damage occurring after traumatic brain injury (TBI). However, reduced neuronal excitability, loss of neuronal firing, and a disturbed excitation/inhibition balance have been detected. Parvalbumin (PV) interneurons are
Jayeeta Basu et al.
Neuron, 79(6), 1208-1221 (2013-09-21)
How does coordinated activity between distinct brain regions implement a set of learning rules to sculpt information processing in a given neural circuit? Using interneuron cell-type-specific optical activation and pharmacogenetic silencing in vitro, we show that temporally precise pairing of
Arghya Mukherjee et al.
Nature communications, 9(1), 2727-2727 (2018-07-15)
Prefrontal cortical areas mediate flexible adaptive control of behavior, but the specific contributions of individual areas and the circuit mechanisms through which they interact to modulate learning have remained poorly understood. Using viral tracing and pharmacogenetic techniques, we show that

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico