L0777
Lipase from Aspergillus oryzae
solution, ≥100,000 U/g, white, beige
Synonym(s):
AOL, Lipolase 100L
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
biological source
Aspergillus sp. (Aspergillus oryzae)
Quality Level
form
solution
specific activity
≥100,000 U/g
storage condition
(Tightly closed. Dry)
technique(s)
cell based assay: suitable
color
beige
white
storage temp.
2-8°C
InChI
1S/C11H9N3O2.Na/c15-8-4-5-9(10(16)7-8)13-14-11-3-1-2-6-12-11;/h1-7,16H,(H,12,14);/q;+1/b13-9-;
InChI key
QWZUIMCIEOCSJF-CHHCPSLASA-N
Looking for similar products? Visit Product Comparison Guide
General description
Research area: Cell Signaling
Lipase is derived from Aspergillus oryzae by ammonium sulfate precipitation and chromatography.Lipases or triacylglycerol acyl hydrolases are a group of hydrolase enzymes that are usually found in humans and animals with monogastric stomachs. Lipase enzymes are generally formed in the pancreas and stomach where they aid in fat and lipids digestion.(2)
Lipase is derived from Aspergillus oryzae by ammonium sulfate precipitation and chromatography.Lipases or triacylglycerol acyl hydrolases are a group of hydrolase enzymes that are usually found in humans and animals with monogastric stomachs. Lipase enzymes are generally formed in the pancreas and stomach where they aid in fat and lipids digestion.(2)
Application
Lipase from Aspergillus oryzae has been used:
- as a control enzyme in activity assays
- as a component in lipolase stock solution for the hydrolysis experiments
- to incubate scaffolds for lipase-accelerated degradation experiments
- as the lipolytic enzyme standard to detect lipolytic enzymatic activity via chromogenic agar plates and zymography
Biochem/physiol Actions
Lipase is widely used in several industries including food and pharmaceuticals. It mediates the hydrolysis of fats and oil. Lipase is utilized for peptide synthesis and in the detergent industry. It is active in the range of pH 2-5 and temperature between 30-50°C. Metal ions such as Fe2+, Fe3+, and Cu2+ prevent the action of lipase. A less polar organic solvent is preferred for high stability.Lipases play a crucial role in digestion as well as the transportation and processing of dietary lipid substrates by catalyzing the hydrolysis of ester bonds in lipid substrates. The lipase from Aspergillus oryzae (AOL), a multipurpose biocatalyst can be used in the kinetic resolution of a biotin intermediate lactone,α-lipoic acid, and 1-phenylethanol. Additionally, it has the ability to stereoselectively catalyze the hydrolysis of ethyl 2-(4-hydroxyphenoxy) propanoate and its analogs, which are key intermediates in the production of aryloxyphenoxypropionate herbicides. AOL serves as a promising biocatalyst in the esterification of a series of short-chain acids and alcohols to produce flavor esters. It can be used to catalyze the esterification of lauric acid with aromatic alcohol-benzyl alcohol.
Preparation Note
Produced by submerged fermentation of a genetically modified Aspergillus oryzae microorganism
Legal Information
A product of Novozyme Corp.
antibody
Product No.
Description
Pricing
enzyme
Product No.
Description
Pricing
related product
Product No.
Description
Pricing
Signal Word
Danger
Hazard Statements
Precautionary Statements
Hazard Classifications
Resp. Sens. 1
Storage Class Code
11 - Combustible Solids
WGK
WGK 1
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Purification and characterization of lipase produced by Aspergillus oryzae CJLU-31 isolated from waste cooking oily soil
American Journal of Food Technology, 7(10), 596-608 (2012)
Acta biomaterialia, 92, 48-59 (2019-05-21)
To maintain functionality during in situ vascular regeneration, the rate of implant degradation should be closely balanced by neo-tissue formation. It is unknown, however, how the implant's functionality is affected by the degradation of the polymers it is composed of.
Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions
Biomicrofluidics, 7(5), 054103-054103 (2013)
PloS one, 13(8), e0203409-e0203409 (2018-08-31)
Local drug delivery systems that adjust the release of immunosuppressive drug in response to the nature and intensity of inflammation represent a promising approach to reduce systemic immunosuppression and its side effects in allotransplantation. Here we aimed to demonstrate that
Materials today. Communications, 24, 101197-101197 (2020-08-25)
The low cost lipase derived from Thermomyces lanugionous was chosen to conjugate with Fe3O4 nanoparitcles as a magnetic responsive lipase (MRL) biocatalyst. The structure of MRL was observed by atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy analysis
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service