Skip to Content
Merck
All Photos(2)

Key Documents

531502

Sigma-Aldrich

Lithium aluminum hydride

reagent grade

Synonym(s):

LAH, Lithium alanate, Lithium tetrahydroaluminate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiAlH4
CAS Number:
Molecular Weight:
37.95
EC Number:
MDL number:
UNSPSC Code:
26111700
PubChem Substance ID:
NACRES:
NA.22

grade

reagent grade

reaction suitability

reagent type: reductant

mp

125 °C (dec.) (lit.)

SMILES string

[Li].[AlH3]

InChI

1S/Al.Li.4H/q-1;+1;;;;

InChI key

OCZDCIYGECBNKL-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

replaced by

Product No.
Description
Pricing

Pictograms

FlameCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1A - Water-react 1

Storage Class Code

4.3 - Hazardous materials which set free flammable gases upon contact with water

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Reductions by lithium aluminum hydride.
Brown WG
Organic Reactions (1951)
Diastereoselective reductive amination of aryl trifluoromethyl ketones and alpha-amino esters.
Greg Hughes et al.
Angewandte Chemie (International ed. in English), 46(11), 1839-1842 (2007-04-24)
Krishnananda Samanta et al.
Bioorganic & medicinal chemistry letters, 20(1), 283-287 (2009-11-26)
A series of new benzoxazepine derivatives substituted with different alkoxy and aryloxy group were synthesized comprising synthetic steps of Mitsunobu reaction, lithium aluminum hydride (LAH) reduction, followed by debenzylation and finally intramolecular Mitsunobu cyclization. The new benzoxazepines specifically inhibited growth
Damián E Bikiel et al.
Inorganic chemistry, 44(15), 5286-5292 (2005-07-19)
The nature of the solute species present in ethereal solutions of LiAlH(4) is of crucial importance for understanding the mechanisms for the reduction of ketones and other functional groups by LiAlH(4). We have employed a combination of theoretical and experimental
Vito Capriati et al.
Organic letters, 4(14), 2445-2448 (2002-07-06)
[reaction: see text] The stereospecific alpha-lithiation of optically active styrene oxides and the trapping reaction of the corresponding highly reactive intermediates with electrophiles to produce optically active styrene oxide derivatives are described. This methodology has been applied to the synthesis

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service