Skip to Content
Merck
All Photos(1)

Key Documents

798991

Sigma-Aldrich

Graphene oxide

film, avg. no. of layers, 1

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CxOyHz
UNSPSC Code:
12352103
NACRES:
NA.23

description

4 cm (diameter) x 12-15 μm (thickness), non-conductive

Quality Level

form

film

feature

avg. no. of layers 1

SMILES string

O=C(O)C1C2=C3C4=C5C6=C7C8=C9C%10=C%11C(C%12=C%13C%10=C%14C8=C%15C6=C%16C4=C%17C2=CC(C(O)=O)C%18=C%17C%19=C%16C%20=C%15C%21=C%14C%22=C%13C(C%23=C%24C%22=C%25C%21=C%26C%20=C%27C%19=C%28C%18=CC(C(O)=O)C%29=C%28C%30=C%27C%31=C%26C%32=C%25C%33=C%24C(C%34=C%35C

InChI

1S/C140H42O20/c141-131(142)26-13-23-15-44-62(140(159)160)45-16-24-14-40-31(132(143)144)5-1-29-41-20-48(135(149)150)56-33-7-3-28-27-2-6-32-55-37(133(145)146)11-9-35-60(138(155)156)42-17-25-18-43-61(139(157)158)36-10-12-38(134(147)148)58-46-21-50(137(153)154)59-47-22-49(136(151)152)57-34-8-4-30-39(19-26)51(23)78-72(44)88-75(45)80-52(24)79(54(29)40)95-71(41)83(56)101-93-69(33)64(28)91-90-63(27)68(32)92-86(66(35)55)73(42)81-53(25)82-74(43)87(67(36)58)96-76(46)85(59)103-97-77(47)84(57)102-94-70(34)65(30)89(78)105-104(88)115-98(80)111(95)116(101)126-122-110(93)107(91)120-119-106(90)108(92)99(81)114-100(82)112(96)118(103)128(124(114)119)123-113(97)117(102)127(130(122)129(120)123)121(109(94)105)125(115)126/h2,5,7-10,12-22,26,38,48-50H,1,3-4,6,11H2,(H,141,142)(H,143,144)(H,145,146)(H,147,148)(H,149,150)(H,151,152)(H,153,154)(H,155,156)(H,157,158)(H,159,160)

InChI key

VTWITIAIMADGRM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Elemental Analysis:Carbon: 49 – 56%
Hydrogen: 0 – 1%
Nitrogen: 0 – 1%
Sulfur: 0 – 2%
Oxygen: 41 – 50%

Application

Novel graphene oxide membranes for ionic and molecular sieving.

Preparation Note

The graphene oxide film is prepared by the filtration of a monolayer graphene oxide dispersion.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

R K Joshi et al.
Science (New York, N.Y.), 343(6172), 752-754 (2014-02-18)
Graphene-based materials can have well-defined nanometer pores and can exhibit low frictional water flow inside them, making their properties of interest for filtration and separation. We investigate permeation through micrometer-thick laminates prepared by means of vacuum filtration of graphene oxide
Pengzhan Sun et al.
ACS nano, 7(1), 428-437 (2012-12-12)
The selective ion penetration and water purification properties of freestanding graphene oxide (GO) membranes are demonstrated. Sodium salts permeated through GO membranes quickly, whereas heavy-metal salts infiltrated much more slowly. Interestingly, copper salts were entirely blocked by GO membranes, and
Hang Li et al.
Science (New York, N.Y.), 342(6154), 95-98 (2013-10-05)
Ultrathin, molecular-sieving membranes have great potential to realize high-flux, high-selectivity mixture separation at low energy cost. Current microporous membranes [pore size < 1 nanometer (nm)], however, are usually relatively thick. With the use of current membrane materials and techniques, it

Articles

Since its discovery little more than a decade ago,1 the two-dimensional (2D) allotrope of carbon—graphene—has been the subject of intense multidisciplinary research efforts.

Novel Graphene‑Based Nanostructures Production, Functionalization, and Engineering

Advances in scalable synthesis and processing of two-dimensional materials

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service