Skip to Content
Merck
All Photos(1)

Key Documents

123943

Sigma-Aldrich

Bis(4-nitrophenyl) phosphate

99%

Synonym(s):

Di-4-nitrophenyl hydrogenphosphate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(O2NC6H4O)2P(O)OH
CAS Number:
Molecular Weight:
340.18
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

99%

form

solid

mp

172-175 °C (lit.)

SMILES string

OP(=O)(Oc1ccc(cc1)[N+]([O-])=O)Oc2ccc(cc2)[N+]([O-])=O

InChI

1S/C12H9N2O8P/c15-13(16)9-1-5-11(6-2-9)21-23(19,20)22-12-7-3-10(4-8-12)14(17)18/h1-8H,(H,19,20)

InChI key

MHSVUSZEHNVFKW-UHFFFAOYSA-N

Related Categories

Application

Bis(4-nitrophenyl) phosphate(BNPP) has been used as substrate to determine the enzyme activity of root phosphodiesterases of wetland plants. BNPP has been used to study the mechanism of cleavage of BNPP using oxamido-bridged dinuclear copper(II) complexes as catalysts.

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Acute Tox. 2 Oral

Storage Class Code

6.1A - Combustible, acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

M P Lim et al.
Cell death & disease, 2, e170-e170 (2011-06-10)
The major cellular event in the development and progression of liver fibrosis is the activation of hepatic stellate cells (HSCs). Activated HSCs proliferate and produce excess collagen, leading to accumulation of scar matrix and fibrotic liver. As such, the induction
Eliska Rejmánková et al.
The New phytologist, 190(4), 968-976 (2011-06-30)
Phosphorus (P)-limited plants produce higher amounts of root phosphatases, but research has mostly focused on phosphomonoesterases (PMEs). Because phosphate diesters can form a significant proportion of organic P in wetlands, we aimed to determine whether wetland plants produce both root
Studies on the reaction kinetics and the mechanism of hydrolysis of bis (4-nitrophenyl) phosphate (BNPP) catalyzed by oxamido-bridged dinuclear copper (II) complexes in micellar solution.
Xie J, et al.
Transition Met. Chem. (London), 28(7), 782-787 (2003)
Michael Subat et al.
Inorganic chemistry, 47(11), 4661-4668 (2008-05-09)
Previously reported mono- and dinuclear Zn(II), Cu(II), and Ni(II) complexes of 1,4,7,10-tetrazacyclododecane ([12]aneN4 or cyclen) with different heterocyclic spacers (triazine, pyridine) of various lengths (bi- and tripyridine) or an azacrown-pendant have been tested for the hydrolysis of bis(4-nitrophenyl)phosphate (BNPP) under
Sylvia H-C Yip et al.
Protein engineering, design & selection : PEDS, 24(12), 861-872 (2011-10-08)
Directed evolution was used to enhance the activity of the glycerophosphodiesterase enzyme from Enterobacter aerogenes, GpdQ, toward bis(para-nitrophenol) phosphate (BpNPP), a substrate that is frequently used to assay phosphodiesterases. Native GpdQ has a low level of activity toward BpNPP while

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service