Direkt zum Inhalt
Merck
  • Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks.

Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks.

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology (2014-10-21)
Jay G Hosking, Stan B Floresco, Catharine A Winstanley
ZUSAMMENFASSUNG

Successful decision making often requires weighing a given option's costs against its associated benefits, an ability that appears perturbed in virtually every severe mental illness. Animal models of such cost/benefit decision making overwhelmingly implicate mesolimbic dopamine in our willingness to exert effort for a larger reward. Until recently, however, animal models have invariably manipulated the degree of physical effort, whereas human studies of effort have primarily relied on cognitive costs. Dopamine's relationship to cognitive effort has not been directly examined, nor has the relationship between individuals' willingness to expend mental versus physical effort. It is therefore unclear whether willingness to work hard in one domain corresponds to willingness in the other. Here we utilize a rat cognitive effort task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, and a previously established physical effort-discounting task (EDT) to examine dopaminergic and noradrenergic contributions to effort. The dopamine antagonists eticlopride and SCH23390 each decreased willingness to exert physical effort on the EDT; these drugs had no effect on willingness to exert mental effort for the rCET. Preference for the high effort option correlated across the two tasks, although this effect was transient. These results suggest that dopamine is only minimally involved in cost/benefit decision making with cognitive effort costs. The constructs of mental and physical effort may therefore comprise overlapping, but distinct, circuitry, and therapeutic interventions that prove efficacious in one effort domain may not be beneficial in another.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 4.0 M in dioxane
Sigma-Aldrich
Salzsäure -Lösung, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Salzsäure, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Salzsäure, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chlorwasserstoff -Lösung, 2.0 M in diethyl ether
Sigma-Aldrich
Salzsäure, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Supelco
Salzsäure -Lösung, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Chlorwasserstoff -Lösung, 1.0 M in diethyl ether
Sigma-Aldrich
Chlorwasserstoff, ReagentPlus®, ≥99%
Sigma-Aldrich
Salzsäure -Lösung, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Chlorwasserstoff -Lösung, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Salzsäure -Lösung, 32 wt. % in H2O, FCC
Sigma-Aldrich
Yohimbin -hydrochlorid, ≥98% (HPLC), powder
Sigma-Aldrich
Chlorwasserstoff -Lösung, 1.0 M in acetic acid
Supelco
Chlorwasserstoff – Methanol -Lösung, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Salzsäure – Ethanol -Lösung, ~1.25 M HCl, for GC derivatization, LiChropur
Supelco
Chlorwasserstoff–2-Propanol -Lösung, ~1.25 M HCl (T), for GC derivatization, LiChropur
Yohimbin -hydrochlorid, European Pharmacopoeia (EP) Reference Standard