Direkt zum Inhalt
Merck
  • The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

Eukaryotic cell (2012-09-18)
Barry J Bowman, Stephen Abreu, Jessica K Johl, Emma Jean Bowman
ZUSAMMENFASSUNG

The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Mangan(II)-chlorid Tetrahydrat, ReagentPlus®, ≥99%
Sigma-Aldrich
Mangan(II)-chlorid Tetrahydrat, ACS reagent, ≥98%
Sigma-Aldrich
Mangan(II)-chlorid -Lösung, BioReagent, for molecular biology, storage temp.:room temp
Sigma-Aldrich
Mangan(II)-chlorid, powder and chunks, ≥99% trace metals basis
Sigma-Aldrich
Mangan(II)-chlorid Tetrahydrat, 99.99% trace metals basis
Sigma-Aldrich
Mangan(II)-chlorid Tetrahydrat, BioReagent, suitable for insect cell culture
Sigma-Aldrich
Mangan(II)-chlorid, beads, 98%
Sigma-Aldrich
Mangan(II)-chlorid, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Mangan(II)-chlorid Tetrahydrat, BioUltra, for molecular biology, ≥99.0% (KT)
Sigma-Aldrich
Mangan(II)-chlorid 0,1 mol/l -Lösung
Sigma-Aldrich
Mangan(II)-chlorid Tetrahydrat, meets USP testing specifications
Sigma-Aldrich
Mangan(II)-chlorid, AnhydroBeads, −10 mesh, 99.999% trace metals basis