Skip to Content
Merck
All Photos(2)

Key Documents

764752

Sigma-Aldrich

Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide)

PEG average Mn 5,000, PLGA Mn 55,000

Synonym(s):

PEG-PLGA, Polyethylene glycol, mPEG-b-PLGA, mPEG-b-PLGA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H[(C3H4O2)x(C2H2O2)y]mO[C2H4O]nCH3
UNSPSC Code:
12162002
NACRES:
NA.23

description

typical PEG PDI < 1.1; overall PDI < 2.5

Quality Level

form

pellets

feed ratio

lactide:glycolide 50:50

mol wt

PEG average Mn 5,000
PLGA Mn 55,000
average Mn 60,000 (total)

degradation timeframe

1-4 weeks

transition temp

Tg 10 °C(lit.)
Tm 254-259 °C

PDI

<1.2

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part.

Application

Used in the synthesis of targeted nanoparticles which are used for differential delivery and controlled release of drugs.

Features and Benefits

  • Good biocompatibility, low immunogenicity and good degradability.
  • Properties can be easily modulated by changing the block copolymer segment sizes to suit a particular application.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Thermosensitive self-assembling block copolymers as drug delivery systems
Bonacucina, G., Cespi, M., Mencarelli, G., Giorgioni, G., &amp; Palmieri, G. F.
Polymers (Basel, Switzerland), 3(2), 779-811 (2011)
Hunter Bachman et al.
Lab on a chip, 20(7), 1238-1248 (2020-02-28)
Whether reagents and samples need to be combined to achieve a desired reaction, or precise concentrations of solutions need to be mixed and delivered downstream, thorough mixing remains a critical step in many microfluidics-based biological and chemical assays and analyses.
Frank Gu et al.
Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2586-2591 (2008-02-15)
There has been progressively heightened interest in the development of targeted nanoparticles (NPs) for differential delivery and controlled release of drugs. Despite nearly three decades of research, approaches to reproducibly formulate targeted NPs with the optimal biophysicochemical properties have remained
PLGA-PEG Encapsulated sitamaquine nanoparticles drug delivery system against Leishmania donovani
Kumara, R., Sahoo, G. C., Pandeya, K., Dasa, V. N. R., Yousuf, M., Ansaria, S. R., &amp; Dasa, P.
Journal of Scientific and Innovative Research, 3(1), 85-90 (2014)

Articles

One of the common difficulties with intravenous drug delivery is low solubility of the drug. The requirement for large quantities of saline to dissolve such materials limits their clinical use, and one solution for this problem that has recently generated interest is the formation of drug-loaded micelles.

Microparticle drug delivery systems have been extensively researched and applied to a wide variety of pharmaceutical and medical applications due to a number of advantages including injectability, local applicability to target tissues and sites, and controlled drug delivery over a given time period.

The development of drugs that target specific locations within the human body remains one of the greatest challenges in biomedicine today.

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service