Passa al contenuto
Merck

Roles of human POLD1 and POLD3 in genome stability.

Scientific reports (2016-12-16)
Emanuela Tumini, Sonia Barroso, Carmen Pérez -Calero, Andrés Aguilera
ABSTRACT

DNA replication is essential for cellular proliferation. If improperly controlled it can constitute a major source of genome instability, frequently associated with cancer and aging. POLD1 is the catalytic subunit and POLD3 is an accessory subunit of the replicative Pol δ polymerase, which also functions in DNA repair, as well as the translesion synthesis polymerase Pol ζ, whose catalytic subunit is REV3L. In cells depleted of POLD1 or POLD3 we found a differential but general increase in genome instability as manifested by DNA breaks, S-phase progression impairment and chromosome abnormalities. Importantly, we showed that both proteins are needed to maintain the proper amount of active replication origins and that POLD3-depletion causes anaphase bridges accumulation. In addition, POLD3-associated DNA damage showed to be dependent on RNA-DNA hybrids pointing toward an additional and specific role of this subunit in genome stability. Interestingly, a similar increase in RNA-DNA hybrids-dependent genome instability was observed in REV3L-depleted cells. Our findings demonstrate a key role of POLD1 and POLD3 in genome stability and S-phase progression revealing RNA-DNA hybrids-dependent effects for POLD3 that might be partly due to its Pol ζ interaction.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anticorpo anti fosfo-istone H2A.X (Ser139), colone JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
Nocodazolo, ≥99% (TLC), powder
Sigma-Aldrich
(S)-(+)-Camptothecin, ≥90% (HPLC), powder
Sigma-Aldrich
Anti-DNA Antibody, single stranded, clone TNT-3, Chemicon®, from mouse
Sigma-Aldrich
MISSION® esiRNA, targeting human POLD3