Passa al contenuto
Merck
  • Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment.

Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment.

American journal of physiology. Gastrointestinal and liver physiology (2014-06-28)
Stéphanie Da Silva, Catherine Robbe-Masselot, Afifa Ait-Belgnaoui, Alessandro Mancuso, Myriam Mercade-Loubière, Christel Salvador-Cartier, Marion Gillet, Laurent Ferrier, Pascal Loubière, Etienne Dague, Vassilia Theodorou, Muriel Mercier-Bonin
ABSTRACT

Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L. farciminis bound to intestinal Muc2 and prevented WAS-induced functional alterations and changes in mucin O-glycosylation and mucus physical properties. WAS-induced functional changes were associated with mucus alterations resulting from a shift in O-glycosylation rather than from changes in mucin expression. L. farciminis treatment prevented these alterations, conferring epithelial and mucus barrier strengthening.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Dimetil solfossido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, for molecular biology
Sigma-Aldrich
Dimetil solfossido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimetil solfossido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimetil solfossido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimetil solfossido, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimetil solfossido, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimetil solfossido, PCR Reagent
Sigma-Aldrich
Dimetil solfossido, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimetil solfossido, anhydrous, ≥99.9%
USP
Dimetil solfossido, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimetil solfossido, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Supelco
Dimetil solfossido, analytical standard
Supelco
Dimetil solfossido, for inorganic trace analysis, ≥99.99995% (metals basis)
Dimetil solfossido, European Pharmacopoeia (EP) Reference Standard