Passa al contenuto
Merck
  • Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP.

Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP.

Nanomedicine (London, England) (2011-06-08)
Daniela Segat, Regina Tavano, Marta Donini, Francesco Selvestrel, Iria Rio-Echevarria, Matija Rojnik, Petra Kocbek, Janko Kos, Selma Iratni, Dietrich Sheglmann, Fabrizio Mancin, Stefano Dusi, Emanuele Papini
ABSTRACT

We wanted to test the proinflammatory effects of vinyltriethoxysilane-based organically modified silica nanoparticles (ORMOSIL-NPs) in vitro on blood leukocytes. Cell selectivity, cytokines/chemokines and O(2) (-) production were analyzed using nonpolyethylene glycol (PEG)ylated and PEGylated ORMOSIL-NPs, poly(lactic-co-glycolic acid) (PLGA)-NPs and small unilamellar vesicles (SUV)-NPs. ORMOSIL-NPs mostly bound to monocytes while other NPs to all leukocyte types similarly. Cell capture of PEGylated-NPs decreased strongly (ORMOSIL), moderately (PLGA) and weakly (SUV). Bare ORMOSIL-NPs effectively stimulated the production of IL-1β/IL-6/TNF-α/IL-8 by monocytes and of IL-8 by polymorphonuclear leukocytes (PMNs). NP PEGylation inhibited such effects only partially. Formyl-methionine-leucine phenylalanine (f-MLP) further increased the release of cytokines/chemokines by monocytes/PMNs primed with bare and PEGylated ORMOSIL-NPs. PEGylated SUV-NPs, bare and PEGylated ORMOSIL- and PLGA-NPs sensitize PMNs and monocytes to secrete O(2) (-) upon f-MLP stimulation. ORMOSIL-NPs are preferentially captured by circulating monocytes but stimulate both monocytes and PMNs per se or by sensitizing them to another agonist (f-MLP). PEG-coating confers stealth effects but does not completely eliminate leukocyte activation. Safe nanomedical applications require the evaluation of both intrinsic and cooperative proinflammatory potential of NPs.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Triethoxyvinylsilane, 97%
Sigma-Aldrich
Triethoxyvinylsilane, ≥98%, deposition grade