Passa al contenuto
Merck

Mutually Reinforced Polymer-Graphene Bilayer Membranes for Energy-Efficient Acoustic Transduction.

Advanced materials (Deerfield Beach, Fla.) (2020-11-26)
Assad U Khan, Gabriel Zeltzer, Gavriel Speyer, Zacary L Croft, Yichen Guo, Yehiel Nagar, Vlada Artel, Adi Levi, Chen Stern, Doron Naveh, Guoliang Liu
ABSTRACT

Graphene holds promise for thin, ultralightweight, and high-performance nanoelectromechanical transducers. However, graphene-only devices are limited in size due to fatigue and fracture of suspended graphene membranes. Here, a lightweight, flexible, transparent, and conductive bilayer composite of polyetherimide and single-layer graphene is prepared and suspended on the centimeter scale with an unprecedentedly high aspect ratio of 105 . The coupling of the two components leads to mutual reinforcement and creates an ultrastrong membrane that supports 30 000 times its own weight. Upon electromechanical actuation, the membrane pushes a massive amount of air and generates high-quality acoustic sound. The energy efficiency is ≈10-100 times better than state-of-the-art electrodynamic speakers. The bilayer membrane's combined properties of electrical conductivity, mechanical strength, optical transparency, thermal stability, and chemical resistance will promote applications in electronics, mechanics, and optics.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Polyetherimide, melt index 18 g/10 min (337 °C/6.6kg)