Passa al contenuto
Merck

Inflammatory signatures distinguish metabolic health in African American women with obesity.

PloS one (2018-05-09)
Gerald V Denis, Paola Sebastiani, Kimberly A Bertrand, Katherine J Strissel, Anna H Tran, Jaromir Slama, Nilton D Medina, Guillaume Andrieu, Julie R Palmer
ABSTRACT

Obesity-driven Type 2 diabetes (T2D) is a systemic inflammatory condition associated with cardiovascular disease. However, plasma cytokines and tissue inflammation that discriminate T2D risk in African American women with obese phenotypes are not well understood. We analyzed 64 circulating cytokines and chemokines in plasma of 120 African American women enrolled in the Black Women's Health Study. We used regression analysis to identify cytokines and chemokines associated with obesity, co-morbid T2D and hypertension, and compared results to obese women without these co-morbidities, as well as to lean women without the co-morbidities. We then used hierarchical clustering to generate inflammation signatures by combining the effects of identified cytokines and chemokines and summarized the signatures using an inflammation score. The analyses revealed six distinct signatures of sixteen cytokines/chemokines (P = 0.05) that differed significantly by prevalence of T2D (P = 0.004), obesity (P = 0.0231) and overall inflammation score (P < E-12). Signatures were validated in two independent cohorts of African American women with obesity: thirty nine subjects with no metabolic complications or with T2D and hypertension; and thirteen breast reduction surgical patients. The signatures in the validation cohorts closely resembled the distributions in the discovery cohort. We find that blood-based cytokine profiles usefully associate inflammation with T2D risks in vulnerable subjects, and should be combined with metabolism and obesity counselling for personalized risk assessment.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Millipore
MILLIPLEX® Human Cytokine/Chemokine Magnetic Bead Panel II - Premixed 23 Plex - Immunology Multiplex Assay, Simultaneously analyze multiple cytokine and chemokine biomarkers with Bead-Based Multiplex Assays using the Luminex technology, in mouse serum, plasma and cell culture samples.