Passa al contenuto
Merck

Lysyl-tRNA synthetase produces diadenosine tetraphosphate to curb STING-dependent inflammation.

Science advances (2020-06-05)
J Guerra, A-L Valadao, D Vlachakis, K Polak, I K Vila, C Taffoni, T Prabakaran, A S Marriott, R Kaczmarek, A Houel, B Auzemery, S Déjardin, P Boudinot, B Nawrot, N J Jones, S R Paludan, S Kossida, C Langevin, N Laguette
ABSTRACT

Inflammation is an essential part of immunity against pathogens and tumors but can promote disease if not tightly regulated. Self and non-self-nucleic acids can trigger inflammation, through recognition by the cyclic GMP-AMP (cGAMP) synthetase (cGAS) and subsequent activation of the stimulator of interferon genes (STING) protein. Here, we show that RNA:DNA hybrids can be detected by cGAS and that the Lysyl-tRNA synthetase (LysRS) inhibits STING activation through two complementary mechanisms. First, LysRS interacts with RNA:DNA hybrids, delaying recognition by cGAS and impeding cGAMP production. Second, RNA:DNA hybrids stimulate LysRS-dependent production of diadenosine tetraphosphate (Ap4A) that in turn attenuates STING-dependent signaling. We propose a model whereby these mechanisms cooperate to buffer STING activation. Consequently, modulation of the LysRS-Ap4A axis in vitro or in vivo interferes with inflammatory responses. Thus, altogether, we establish LysRS and Ap4A as pharmacological targets to control STING signaling and treat inflammatory diseases.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
DMXAA, ≥98% (HPLC), solid