Passa al contenuto
Merck
  • Expression of functionally distinct variants of the beta(4)A integrin subunit in relation to the differentiation state in human intestinal cells.

Expression of functionally distinct variants of the beta(4)A integrin subunit in relation to the differentiation state in human intestinal cells.

The Journal of biological chemistry (1999-10-09)
N Basora, F E Herring-Gillam, F Boudreau, N Perreault, L P Pageot, M Simoneau, Y Bouatrouss, J F Beaulieu
ABSTRACT

Integrins are important mediators of cell-laminin interactions. In the small intestinal epithelium, which consists of spatially separated proliferative and differentiated cell populations located, respectively, in the crypt and on the villus, laminins and laminin-binding integrins are differentially expressed along the crypt-villus axis. One exception to this is the integrin alpha(6)beta(4), which is thought to be ubiquitously expressed by intestinal cells. However, in this study, a re-evaluation of the beta(4) subunit expression with different antibodies revealed that two forms of beta(4) exist in the human intestinal epithelium. Furthermore, we show that differentiated enterocytes express a full-length 205-kDa beta(4)A subunit, whereas undifferentiated crypt cells express a novel beta(4)A subunit that does not contain the COOH-terminal segment of the cytoplasmic domain (beta(4)A(ctd-)). This new form was not found to arise from alternative beta(4) mRNA splicing. Moreover, we found that these two beta(4)A forms can associate into alpha(6)beta(4)A complexes; however, the beta(4)A(ctd-) integrin expressed by the undifferentiated crypt cells is not functional for adhesion to laminin-5. Hence, these studies identify a novel alpha(6)beta(4)A(ctd-) integrin expressed in undifferentiated intestinal crypt cells that is functionally distinct.