Accéder au contenu
Merck

Liver X Receptor activation delays chondrocyte hypertrophy during endochondral bone growth.

Osteoarthritis and cartilage (2014-05-24)
M M-G Sun, F Beier
RÉSUMÉ

Activation of the Liver X Receptor (LXR) has recently been identified as a therapeutic strategy for osteoarthritis (OA). Human OA articular cartilage explants show decreased LXR expression, and LXRβ-null mice display OA-like symptoms. LXR agonist administration to OA articular cartilage explants suppresses proteoglycan degradation and restores LXR-activated transcription. We aimed to investigate the effect of LXR activation on chondrocyte differentiation to elucidate the molecular mechanisms behind its protection against OA. The specific LXR agonist, GW3965, was used to examine the effect of LXR activation on chondrocyte differentiation. Tibia organ cultures were used to examine the effect of LXR activation on bone growth and growth plate morphology, followed by immunohistochemical analysis. In ATDC5 and micromass cultures, chondrocyte differentiation was examined through cellular staining and proliferation assays. Various chondrogenic markers were analyzed by real-time reverse-transcription polymerase chain reaction (qRT-PCR) in micromass RNA. Chondrocyte hypertrophy was suppressed by GW3965 treatment, as shown by decreased hypertrophic zone length in the tibial growth plate, decreased alkaline phosphatase staining in ATDC5 and micromass cultures, and down regulation of Col10a1, Mmp13 and Runx2 expression. Increased proliferation in treated ATDC5 cells and up-regulation of Col2a1 expression in treated micromass cultures suggest hypertrophy is suppressed secondary to prolonged proliferation. Decreased p57 levels in treated growth plates suggest this to be due to cell-cycle exit delay. Our findings regarding LXR's role in cartilage development provide insight into how LXR activation prevents cartilage breakdown, further solidifying its potential as a therapeutic target of OA.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Diméthylsulfoxyde, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, for molecular biology
Sigma-Aldrich
Diméthylsulfoxyde, ACS reagent, ≥99.9%
Sigma-Aldrich
Diméthylsulfoxyde, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
N,N-Diméthylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Diméthylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
N,N-Diméthylformamide, anhydrous, 99.8%
Sigma-Aldrich
Diméthylsulfoxyde, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Diméthylsulfoxyde, anhydrous, ≥99.9%
Sigma-Aldrich
Diméthylsulfoxyde, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Diméthylsulfoxyde, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Anticorps monoclonal anti-β-actine antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
N,N-Diméthylformamide, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Diméthylsulfoxyde, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
N,N-Diméthylformamide, for molecular biology, ≥99%
Sigma-Aldrich
N,N-Diméthylformamide, ReagentPlus®, ≥99%