Accéder au contenu
Merck

Isolation and initial structure-functional characterization of endogenous tRNA-derived stress-induced RNAs.

RNA biology (2020-03-03)
Yasutoshi Akiyama, Prakash Kharel, Takaaki Abe, Paul Anderson, Pavel Ivanov
RÉSUMÉ

Recent transcriptome-wide studies have identified a diverse pool of transfer RNA (tRNA)-derived RNAs or tRNA-derived fragments (tRFs). Some of these RNAs have been demonstrated to be functional and involved in multiple biological processes ranging from the regulation of gene expression to transgenerational epigenetic inheritance. Post-transcriptional maturation of tRNAs includes various processing events including extensive decoration by various RNA modifications, which are required for correct tRNA folding and stability. Moreover, tRNA modifications determine the pattern and specificity of tRNA cleavage. The major drawbacks of many studies in the field of tRFs are that most of them used synthetic RNAs that closely mimic endogenous tRFs in their sequence, yet lack RNA modification that is found in vivo. Here, we developed a simple method to isolate tRNA-derived stress-induced RNAs (tiRNAs), a specific subset of tRFs. Our approach is scalable, cost-effective and relies on the purification of individual tiRNAs based on a sequence-specific RNA/DNA isolation technique using DNA probes. Our method facilitates functional studies of tiRNAs by addressing how physiological RNA modifications within tRNA fragments affect their biological activities. Here, we report pilot functional studies on selected endogenous tiRNAs, namely tiRNAAla and tiRNAGly. We show that natural 5'-tiRNAAla molecules assemble into G-quadruplex structures, and endogenous 5'-tiRNAGly possesses translation inhibition activity.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-m3G-cap, m7G-cap Antibody, clone H-20, clone H-20, from mouse