Skip to Content
Merck
All Photos(1)

Key Documents

716871

Sigma-Aldrich

Gold nanorods

amine terminated, 10 nm diameter, λmax, 808 nm, dispersion in H2O

Synonym(s):

Au nanorods, Gold nanorod

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

form

colloidal suspension
dispersion in H2O
nanorod

concentration

≥1800.00 μg/mL

diam. × L

10 nm × 41 nm ± 10%

impurities

<0.0001% CTAB

diameter

10 nm

pH

6-8

density

1 g/mL at 25 °C

λmax

808 nm

Mw/Mn

(<10% CV, monodispersity)
>95 (rods)

functional group

amine

storage temp.

2-8°C

InChI

1S/Au

InChI key

PCHJSUWPFVWCPO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Physical properties

Do not freeze, quality lost if frozen even once. Please keep at approximately 4 °C

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Gold nanostructures such as nanorods, nanowires and microgold have found applications in exciting fields such as biomedical engineering, catalysis and diagnostics.

In many technologies, performance requirements drive device dimensions below the scale of electron mean free paths (λe). This trend has increased scientific interest and technological importance of electrical resistivities at the nanoscale.

Inorganic nanomaterials are tunable by size, shape, structure, and/or composition. Advances in the synthesis of well-defined nanomaterials have enabled control over their unique optical, electronic, and chemical properties stimulating tremendous interest across a wide range of disciplines. This article illuminates some of the recent research advances of inorganic nanoparticles (NPs) in optoelectronics applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service