Direkt zum Inhalt
Merck
  • Nicotinamide phosphoribosyltransferase (Nampt) may serve as the marker for osteoblast differentiation of bone marrow-derived mesenchymal stem cells.

Nicotinamide phosphoribosyltransferase (Nampt) may serve as the marker for osteoblast differentiation of bone marrow-derived mesenchymal stem cells.

Experimental cell research (2017-02-06)
Xu He, Jiaxue He, Yingai Shi, Chenchen Pi, Yue Yang, Yanan Sun, Cao Ma, Lin Lin, Lihong Zhang, Yulin Li, Yan Li
ZUSAMMENFASSUNG

Decreased bone volume and strength with aging and enhanced risk of fractures are in part due to reduced number of bone-forming mesenchymal stem cells (MSCs) and cellular dysfunction. In a previous study, we found that osteogenic differentiation of the multipotent and omnipotent preosteoblasts are accompanied by the alterations of intracellular NAD metabolism in which nicotinamide phosphoribosyltransferase (Nampt) plays a regulatory role. The increased Nampt during osteoblast differentiation, the enzyme catalyzing NAD resynthesis from nicotinamide was noted. However, whether Nampt will also be able to affect osteogenic differentiation of primary bone marrow-derived mesenchymal stem cells (BM-MSCs), it is still uncertain. Here we report the role of Nampt in regulating osteoblast differentiation in primary mouse BM-MSCs. We found that Nampt expression was progressively elevated during BM-MSCs osteogenic differentiation. The Nampt inhibitor FK866 or knock-down of Nampt in BM-MSCs led to declined osteoblastogenesis, including attenuated ALP activity, diminished matrix mineralization and down-regulated osteoblast specific marker genes. In addition, declined osteoblastogenesis by Nampt deficiency or addition of FK866 was related to lower intracellular NAD concentration and decreased Sirt1 activity. The present findings demonstrate that osteogenic differentiation in MSCs can be modulated by intracellular NAD metabolism, in which Nampt may serve as an applicable marker for the osteoblast determination.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
p-Nitrophenyl Phosphate Liquid Substrate System, liquid
Sigma-Aldrich
Edelfosine, ≥95% (HPLC)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Nampt