Direkt zum Inhalt
Merck
  • In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance.

In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance.

International journal of pharmaceutics (2015-03-21)
M P Do, C Neut, H Metz, E Delcourt, K Mäder, J Siepmann, F Siepmann
ZUSAMMENFASSUNG

Periodontitis is the primary cause of tooth loss in adults and a very wide-spread disease. Recently, composite implants, based on a drug release rate controlling polymer and an adhesive polymer, have been proposed for an efficient local drug treatment. However, the processes involved in implant formation and the control of drug release in these composite systems are complex and the relationships between the systems' composition and the implants' performance are yet unclear. In this study, advanced characterization techniques (e.g., electron paramagnetic resonance, EPR) were applied to better understand the in-situ forming implants based on: (i) different types of poly(lactic-co-glycolic acid) (PLGA) as drug release rate controlling polymers; (ii) hydroxypropyl methylcellulose (HPMC) as adhesive polymer; and (iii) doxycycline or metronidazole as drugs. Interestingly, HPMC addition to shorter chain PLGA slightly slows down drug release, whereas in the case of longer chain PLGA the release rate substantially increases. This opposite impact on drug release was rather surprising, since the only difference in the formulations was the polymer molecular weight of the PLGA. Based on the physico-chemical analyses, the underlying mechanisms could be explained as follows: since longer chain PLGA is more hydrophobic than shorter chain PLGA, the addition of HPMC leads to a much more pronounced facilitation of water penetration into the system (as evidenced by EPR). This and the higher polymer lipophilicity result in more rapid PLGA precipitation and a more porous inner implant structure. Consequently, drug release is accelerated. In contrast, water penetration into formulations based on shorter chain PLGA is rather similar in the presence and absence of HPMC and the resulting implants are much less porous than those based on longer chain PLGA.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Glycerin, for molecular biology, ≥99.0%
Sigma-Aldrich
Doxycyclin -hyclat
Sigma-Aldrich
Magnesiumchlorid -Lösung, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesiumchlorid, anhydrous, ≥98%
Sigma-Aldrich
Glycerin -Lösung, 83.5-89.5% (T)
Sigma-Aldrich
Glycerin, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerin, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Magnesiumchlorid, powder, <200 μm
Sigma-Aldrich
Metronidazol, BioXtra
Sigma-Aldrich
Glycerin-triacetat, 99%
Sigma-Aldrich
Glycerin, FCC, FG
Sigma-Aldrich
Magnesiumchlorid -Lösung, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Magnesiumchlorid, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Glycerin-triacetat, 99%, FCC, FG
Sigma-Aldrich
Magnesiumchlorid -Lösung, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Glycerin, ≥99.5%
Sigma-Aldrich
Magnesiumchlorid, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
DL-Cystein, technical grade
Sigma-Aldrich
Magnesiumchlorid, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Glycerin, BioXtra, ≥99% (GC)
Sigma-Aldrich
Magnesiumchlorid -Lösung, 0.1 M
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Magnesiumchlorid -Lösung, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
4-Hydroxy-TEMPO-benzoat, freies Radikal, 97%
Sigma-Aldrich
Glycerin, Vetec, reagent grade, 99%
Sigma-Aldrich
Magnesiumchlorid -Lösung, BioUltra, for molecular biology, ~0.025 M in H2O