Direkt zum Inhalt
Merck
  • Methods for differential and quantitative analyses of brain neurosteroid levels by LC/MS/MS with ESI-enhancing and isotope-coded derivatization.

Methods for differential and quantitative analyses of brain neurosteroid levels by LC/MS/MS with ESI-enhancing and isotope-coded derivatization.

Journal of pharmaceutical and biomedical analysis (2015-09-12)
Tatsuya Higashi, Naoto Aiba, Tomoya Tanaka, Kazumi Yoshizawa, Shoujiro Ogawa
ZUSAMMENFASSUNG

The analysis of changes in the brain neurosteroid (NS) levels due to various stimuli can contribute to the elucidation of their physiological roles, and the discovery and development of new antipsychotic agents targeting neurosteroidogenesis. We developed methods for the differential and quantitative analyses of the brain levels of allopregnanolene (AP) and its precursor, pregnenolone (PREG), using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) combined with derivatization using 2-hydrazino-1-methylpyridine (HMP) and its isotope-coded analogue, (2)H3-HMP (d-HMP). For the differential analysis, the brain sample of an untreated rat was derivatized with HMP, while the brain sample of a treated (stressed or drug-administered) rat was derivatized with d-HMP. The two derivatives were mixed and then subjected to LC/ESI-MS/MS. The stress- and drug (clozapine and fluoxetine)-evoked increases in the brain AP and PREG levels were accurately analyzed by the developed method. It was also possible to determine the absolute concentrations of the brain steroids when a deuterium-coded moiety was introduced to the standard steroids of known amounts by the derivatization and the resulting derivatives were used as internal standards. The HMP-derivatization enabled the highly sensitive detection and the use of d-HMP significantly improved the assay precision [the intra- (n=5) and inter-assay (n=5) relative standard deviations did not exceed 13.7%] and accuracy (analytical recovery ranged from 98.7 to 106.7%).

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Chlorwasserstoff -Lösung, 4.0 M in dioxane
Sigma-Aldrich
Natronlauge, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Salzsäure -Lösung, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)