Direkt zum Inhalt
Merck
  • Mode of action of S-methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO) as a novel therapy for stroke in a rat model.

Mode of action of S-methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO) as a novel therapy for stroke in a rat model.

Molecular neurobiology (2014-02-28)
Payam Mohammad-Gharibani, Jigar Modi, Janet Menzie, Rafaella Genova, Zhiyuan Ma, Rui Tao, Howard Prentice, Jang-Yen Wu
ZUSAMMENFASSUNG

One approach for protecting neurons from excitotoxic damage in stroke is to attenuate receptor activity with specific antagonists. S-Methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO), the active metabolite of disulfiram, has been shown to be a partial antagonist of glutamate receptors and effective in reducing seizure. First, we investigated neuroprotective effect of DETC-MeSO on primary cortical neuronal culture under hypoxia/reoxygenation condition in vitro. Then, DETC-MeSO was administered subcutaneously for 4 and 8 days with the first injection occurring 1 h before or 24 h after reperfusion in the rat middle cerebral artery occlusion stroke model. Rats were subjected to the neuroscore test, and the brain was analyzed for infarct size. Monitoring neurotransmitter release was carried out by microdialysis. Heat shock proteins, key proteins involved in apoptosis and endoplasmic reticulum (ER) stress, were analyzed by immunoblotting. DETC-MeSO greatly reduced both cell death following hypoxia/reoxygenation and brain infarct size. It improved performance on the neuroscore test and attenuated proteolysis of αII-spectrin. The level of pro-apoptotic proteins declined, and anti-apoptotic and HSP27 protein expressions were markedly increased. Levels of the ER stress protein markers p-PERK, p-eIF2α, ATF4, JNK, XBP-1, GADD34, and CHOP significantly declined after DETC-MeSO administration. Microdialysis data showed that DETC-MeSO increased high potassium-induced striatal dopamine release indicating that more neurons were protected and survived under ischemic insult in the presence of DETC-MeSO. We also showed that DETC-MeSO can prevent gliosis. DETC-MeSO elicits neuroprotection through the preservation of ER resulting in reduction of apoptosis by increase of anti-apoptotic proteins and decrease of pro-apoptotic proteins.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Calciumchlorid -Lösung, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Deoxycholsäure Natriumsalz, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Calciumchlorid, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Calciumchlorid, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Natriumchlorid, BioUltra, for molecular biology, ≥99.5% (AT)
SAFC
Deoxycholsäure Natriumsalz
Sigma-Aldrich
Calciumchlorid, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Deoxycholsäure Natriumsalz, ≥97% (titration)
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Calciumchlorid Dihydrat
Sigma-Aldrich
Calciumchlorid, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Natriumchlorid -Lösung, 0.85%
Supelco
Natriumchlorid, reference material for titrimetry, certified by BAM, >99.5%
Supelco
Calcium Ionenlösung für ISE, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Natriumchlorid, tested according to Ph. Eur.