Direkt zum Inhalt
Merck
  • Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome.

Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome.

World journal of gastroenterology (2014-10-14)
Xiu-Fang Cui, Wei-Mei Zhou, Yan Yang, Jun Zhou, Xue-Liang Li, Lin Lin, Hong-Jie Zhang
ZUSAMMENFASSUNG

To investigate the role of epidermal growth factor (EGF) in visceral hypersensitivity and its effect on the serotonin transporter (SERT). A rat model for visceral hypersensitivity was established by intra-colonic infusion of 0.5% acetic acid in 10-d-old Sprague-Dawley rats. The visceral sensitivity was assessed by observing the abdominal withdrawal reflex and recording electromyographic activity of the external oblique muscle in response to colorectal distension. An enzyme-linked immunosorbent assay was used to measure the EGF levels in plasma and colonic tissues. SERT mRNA expression was detected by real-time PCR while protein level was determined by Western blot. The correlation between EGF and SERT levels in colon tissues was analyzed by Pearson's correlation analysis. SERT function was examined by tritiated serotonin (5-HT) uptake experiments. Rat intestinal epithelial cells (IEC-6) were used to examine the EGF regulatory effect on SERT expression and function via the EGF receptor (EGFR). EGF levels were significantly lower in the rats with visceral hypersensitivity as measured in plasma (2.639 ± 0.107 ng/mL vs 4.066 ± 0.573 ng/mL, P < 0.01) and in colonic tissue (3.244 ± 0.135 ng/100 mg vs 3.582 ± 0.197 ng/100 mg colon tissue, P < 0.01) compared with controls. Moreover, the EGF levels were positively correlated with SERT levels (r = 0.820, P < 0.01). EGF displayed dose- and time-dependent increased SERT gene expressions in IEC-6 cells. An EGFR kinase inhibitor inhibited the effect of EGF on SERT gene upregulation. SERT activity was enhanced following treatment with EGF (592.908 ± 31.515 fmol/min per milligram vs 316.789 ± 85.652 fmol/min per milligram protein, P < 0.05) and blocked by the EGFR kinase inhibitor in IEC-6 cells (590.274 ± 25.954 fmol/min per milligram vs 367.834 ± 120.307 fmol/min per milligram protein, P < 0.05). A decrease in EGF levels may contribute to the formation of visceral hypersensitivity through downregulation of SERT-mediated 5-HT uptake into enterocytes.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Calciumchlorid -Lösung, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Calciumchlorid, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Calciumchlorid, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Natriumchlorid, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Calciumchlorid, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Natriumchlorid-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Calciumchlorid Dihydrat
Sigma-Aldrich
Natriumchlorid -Lösung, 0.85%
Supelco
Natriumchlorid, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Calciumchlorid, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Supelco
Calcium Ionenlösung für ISE, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Anti-Serotonin Transporter Antibody, serum, Chemicon®
Sigma-Aldrich
Natriumchlorid, tested according to Ph. Eur.