Direkt zum Inhalt
Merck
  • A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction.

A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction.

Journal of the American Chemical Society (2015-03-05)
Xu Jing, Cheng He, Yang Yang, Chunying Duan
ZUSAMMENFASSUNG

The design of artificial systems that mimic highly evolved and finely tuned natural photosynthetic systems is a subject of intensive research. We report herein a new approach to constructing supramolecular systems for the photocatalytic generation of hydrogen from water by encapsulating an organic dye molecule into the pocket of a redox-active metal-organic polyhedron. The assembled neutral Co4L4 tetrahedron consists of four ligands and four cobalt ions that connect together in alternating fashion. The cobalt ions are coordinated by three thiosemicarbazone NS chelators and exhibit a redox potential suitable for electrochemical proton reduction. The close proximity between the redox site and the photosensitizer encapsulated in the pocket enables photoinduced electron transfer from the excited state of the photosensitizer to the cobalt-based catalytic sites via a powerful pseudo-intramolecular pathway. The modified supramolecular system exhibits TON values comparable to the highest values reported for related cobalt/fluorescein systems. Control experiments based on a smaller tetrahedral analogue of the vehicle with a filled pocket and a mononuclear compound resembling the cobalt corner of the tetrahedron suggest an enzymatic dynamics behavior. The new, well-elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
N,N-Dimethylformamid, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimethylformamid, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Benzol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Benzol, ACS reagent, ≥99.0%
Sigma-Aldrich
N,N-Dimethylformamid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
N,N-Dimethylformamid, ReagentPlus®, ≥99%
Sigma-Aldrich
N,N-Dimethylformamid, for molecular biology, ≥99%
Sigma-Aldrich
Adenosin, ≥99%
Sigma-Aldrich
N,N-Dimethylformamid, anhydrous, 99.8%
Sigma-Aldrich
N,N-Dimethylformamid, biotech. grade, ≥99.9%
Sigma-Aldrich
Fluorescein, for fluorescence, free acid
Sigma-Aldrich
Benzol, puriss. p.a., reag. Ph. Eur., ≥99.7%
Sigma-Aldrich
Thiosemicarbazid, 99%
Sigma-Aldrich
Benzol-1,3,5-tricarbaldehyd, 97%
Sigma-Aldrich
Adenosin, suitable for cell culture, BioReagent
Supelco
Benzol, analytical standard
Sigma-Aldrich
Triphenylamin, 98%
Sigma-Aldrich
Benzol, anhydrous, 99.8%
Sigma-Aldrich
Adenosin
Supelco
Dimethylformamid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
4,5-Dihydroxy-anthrachinon-2-carbonsäure, technical grade
Sigma-Aldrich
4,5-Dihydroxy-anthrachinon-2-carbonsäure
Supelco
N,N-Dimethylformamid, analytical standard
Supelco
Benzol, Pharmaceutical Secondary Standard; Certified Reference Material
Fluorescein, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Thiosemicarbazid, puriss. p.a., 98%
Supelco
Adenosin, Pharmaceutical Secondary Standard; Certified Reference Material
Adenosin, European Pharmacopoeia (EP) Reference Standard