Direkt zum Inhalt
Merck
  • Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

Journal of molecular biology (2013-10-29)
Sinisa Bjelic, Yakov Kipnis, Ling Wang, Zbigniew Pianowski, Sergey Vorobiev, Min Su, Jayaraman Seetharaman, Rong Xiao, Gregory Kornhaber, John F Hunt, Liang Tong, Donald Hilvert, David Baker
ZUSAMMENFASSUNG

Designed retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (>10(-3)s(-1)) and kcat/KM (11-25M(-1)s(-1)) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the >10(5)-fold rate accelerations that were achieved are within 1-3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat=10(6) to 10(8)) and an extensively evolved computational design (kcat/kuncat>10(7)). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Aceton, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Aceton, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Aceton, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Aceton, histological grade, ≥99.5%
Supelco
Aceton, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Aceton, analytical standard
Sigma-Aldrich
Aceton, natural, ≥97%
Sigma-Aldrich
Aceton, ≥99%, meets FCC analytical specifications
Supelco
Aceton -Lösung, certified reference material, 2000 μg/mL in methanol: water (9:1)
Sigma-Aldrich
Aldolase aus Kaninchenmuskel, lyophilized powder, ≥8.0 units/mg protein
Sigma-Aldrich
Aceton, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Aldolase aus Kaninchenmuskel, ammonium sulfate suspension, 10-20 units/mg protein
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Supelco
Nabumeton, analytical standard
Nabumeton, European Pharmacopoeia (EP) Reference Standard