Direkt zum Inhalt
Merck

Von Economo Neurons and Fork Cells: A Neurochemical Signature Linked to Monoaminergic Function.

Cerebral cortex (New York, N.Y. : 1991) (2016-12-04)
Anke A Dijkstra, Li-Chun Lin, Alissa L Nana, Stephanie E Gaus, William W Seeley
ZUSAMMENFASSUNG

The human anterior cingulate and frontoinsular cortices are distinguished by 2 unique Layer 5 neuronal morphotypes, the von Economo neurons (VENs) and fork cells, whose biological identity remains mysterious. Insights could impact research on diverse neuropsychiatric diseases to which these cells have been linked. Here, we leveraged the Allen Brain Atlas to evaluate mRNA expression of 176 neurotransmitter-related genes and identified vesicular monoamine transporter 2 (VMAT2), gamma-aminobutyric acid (GABA) receptor subunit θ (GABRQ), and adrenoreceptor α-1A (ADRA1A) expression in human VENs, fork cells, and a minority of neighboring Layer 5 neurons. We confirmed these results using immunohistochemistry or in situ hybridization. VMAT2 and GABRQ expression was absent in mouse cerebral cortex. Although VMAT2 is known to package monoamines into synaptic vesicles, in VENs and fork cells its expression occurs in the absence of monoamine-synthesizing enzymes or reuptake transporters. Thus, VENs and fork cells may possess a novel, uncharacterized mode of cortical monoaminergic function that distinguishes them from most other mammalian Layer 5 neurons.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-Vesikulärer Monoamintransporter-2-Antikörper, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Tryptophan Hydroxylase/Tyrosine Hydroxylase/Phenylalanine Hydroxylase Antibody, clone PH8, clone PH8, Chemicon®, from mouse
Sigma-Aldrich
Monoclonal Anti-DOPA Decarboxylase (DDC) antibody produced in mouse, clone DDC-109, ascites fluid