Accéder au contenu
MilliporeSigma

3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics.

Molecular pharmaceutics (2015-10-17)
Alvaro Goyanes, Jie Wang, Asma Buanz, Ramón Martínez-Pacheco, Richard Telford, Simon Gaisford, Abdul W Basit
RÉSUMÉ

Three dimensional printing (3D printing) was used to fabricate novel oral drug delivery devices with specialized design configurations. Each device was loaded with multiple actives, with the intent of applying this process to the production of personalized medicines tailored at the point of dispensing or use. A filament extruder was used to obtain drug-loaded--paracetamol (acetaminophen) or caffeine--filaments of poly(vinyl alcohol) with characteristics suitable for use in fused-deposition modeling 3D printing. A multinozzle 3D printer enabled fabrication of capsule-shaped solid devices containing the drug with different internal structures. The design configurations included a multilayer device, with each layer containing drug, whose identity was different to the drug in the adjacent layers, and a two-compartment device comprising a caplet embedded within a larger caplet (DuoCaplet), with each compartment containing a different drug. Raman spectroscopy was used to collect 2-dimensional hyper spectral arrays across the entire surface of the devices. Processing of the arrays using direct classical least-squares component matching to produce false color representations of distribution of the drugs was used. This clearly showed a definitive separation between the drug layers of paracetamol and caffeine. Drug release tests in biorelevant bicarbonate media showed unique drug release profiles dependent on the macrostructure of the devices. In the case of the multilayer devices, release of both paracetamol and caffeine was simultaneous and independent of drug solubility. With the DuoCaplet design, it was possible to engineer either rapid drug release or delayed release by selecting the site of incorporation of the drug in the device; the lag-time for release from the internal compartment was dependent on the characteristics of the external layer. The study confirms the potential of 3D printing to fabricate multiple-drug containing devices with specialized design configurations and unique drug release characteristics, which would not otherwise be possible using conventional manufacturing methods.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide phosphorique, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acide phosphorique, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Acide phosphorique, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Acide phosphorique, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥85%
Sigma-Aldrich
Acide phosphorique, crystalline, ≥99.999% trace metals basis
Sigma-Aldrich
Acide phosphorique, puriss. p.a., crystallized, ≥99.0% (T)
Sigma-Aldrich
Acide phosphorique, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, 85.0-88.0%
Sigma-Aldrich
Caféine, anhydrous, 99%, FCC, FG
Sigma-Aldrich
Acide phosphorique, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Acide phosphorique, BioUltra, ≥85% (T)
Sigma-Aldrich
Acétonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
Sigma-Aldrich
Caféine, powder, ReagentPlus®
Sigma-Aldrich
Acide phosphorique, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
Acide phosphorique, BioReagent, suitable for insect cell culture, 85%
Sigma-Aldrich
Acétonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acétonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acétaminophène, BioXtra, ≥99.0%
Sigma-Aldrich
Acétonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acétaminophène, analytical standard
Supelco
Acetaminophen solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Polyvinyl alcohol (PVA) printing filament, 1.75 mm
Sigma-Aldrich
Acétaminophène, meets USP testing specifications, 98.0-102.0%, powder
Sigma-Aldrich
Acétonitrile, ≥99.5% (GC)
Sigma-Aldrich
Polyvinyl alcohol (PVA) printing filament, 2.85 mm
Sigma-Aldrich
Acide phosphorique solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Sigma-Aldrich
Caféine, Sigma Reference Standard, vial of 250 mg
Sigma-Aldrich
Acide phosphorique, puriss., ≥99%
Sigma-Aldrich
Acide phosphorique solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.