Accéder au contenu
MilliporeSigma

Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei.

PloS one (2015-12-03)
Olivier Biner, Christian Trachsel, Aline Moser, Lukas Kopp, Nicolas Langenegger, Urs Kämpfer, Christoph von Ballmoos, Wolfgang Nentwig, Stefan Schürch, Johann Schaller, Lucia Kuhn-Nentwig
RÉSUMÉ

Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide trifluoroacétique, ReagentPlus®, 99%
Sigma-Aldrich
Acide acétique, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acide acétique, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
2-mercaptoéthanol, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
Chlorure de calcium dihydrate, ACS reagent, ≥99%
Sigma-Aldrich
2-mercaptoéthanol, ≥99.0%
Sigma-Aldrich
Chlorure de magnésium solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Acide trifluoroacétique, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Chlorure de magnésium, anhydrous, ≥98%
Sigma-Aldrich
Acide acétique, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Chlorure de calcium dihydrate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Manganese(II) sulfate monohydrate, ReagentPlus®, ≥99%
Sigma-Aldrich
Acide acétique solution, suitable for HPLC
Sigma-Aldrich
Acide acétique, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acide acétique, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Cobalt(II) chloride hexahydrate, ACS reagent, 98%
Sigma-Aldrich
Manganese(II) sulfate monohydrate, ACS reagent, ≥98%
Sigma-Aldrich
Chlorure de calcium dihydrate, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
2-mercaptoéthanol, BioUltra, for molecular biology, ≥99.0% (GC)