Accéder au contenu
MilliporeSigma

Cabergoline, dopamine D2 receptor agonist, prevents neuronal cell death under oxidative stress via reducing excitotoxicity.

PloS one (2014-06-11)
Haruki Odaka, Tadahiro Numakawa, Naoki Adachi, Yoshiko Ooshima, Shingo Nakajima, Yusuke Katanuma, Takafumi Inoue, Hiroshi Kunugi
RÉSUMÉ

Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H₂O₂ exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H₂O₂ was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H₂O₂, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca²⁺ channel demonstrated a survival effect against H₂O₂. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H₂O₂.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Peroxyde d'hydrogène solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Peroxyde d'hydrogène solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Éther diéthylique, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Éther diéthylique, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Éther diéthylique, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Chlorure de calcium solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Peroxyde d'hydrogène solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Éther diéthylique, contains 1 ppm BHT as inhibitor, anhydrous, ≥99.7%
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Peroxyde d'hydrogène solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Éther diéthylique, contains BHT as inhibitor, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Millipore
Peroxyde d'hydrogène solution, 3%, suitable for microbiology
Sigma-Aldrich
Chlorure de sodium, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Chlorure de sodium solution, 5 M