Accéder au contenu
MilliporeSigma

Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

Journal of chemical ecology (2014-12-06)
Charles J Mason, Kennedy F Rubert-Nason, Richard L Lindroth, Kenneth F Raffa
RÉSUMÉ

Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acide formique, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Acide formique, ACS reagent, ≥88%
Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acétonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acétonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acide formique, ≥95%, FCC, FG
Sigma-Aldrich
D-(−)-Salicin, ≥99% (GC)
Sigma-Aldrich
Acétonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acétonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acétonitrile, electronic grade, 99.999% trace metals basis
Supelco
Acétonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acétonitrile, ≥99.5% (GC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Supelco
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acide formique solution, BioUltra, 1.0 M in H2O
Supelco
Acétonitrile, analytical standard
Sigma-Aldrich
Salicylic acid-d6, 98 atom % D, 99% (CP)
Sigma-Aldrich
Acétonitrile, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
Supelco
Acétonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acétonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC