Accéder au contenu
MilliporeSigma
  • Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function.

Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function.

PloS one (2014-06-21)
Tatiana Zyryanova, Rick Schneider, Volker Adams, Doreen Sittig, Christiane Kerner, Claudia Gebhardt, Henrik Ruffert, Stefan Glasmacher, Pierre Hepp, Karla Punkt, Jochen Neuhaus, Jörg Hamann, Gabriela Aust
RÉSUMÉ

CD97 is a widely expressed adhesion class G-protein-coupled receptor (aGPCR). Here, we investigated the presence of CD97 in normal and malignant human skeletal muscle as well as the ultrastructural and functional consequences of CD97 deficiency in mice. In normal human skeletal muscle, CD97 was expressed at the peripheral sarcolemma of all myofibers, as revealed by immunostaining of tissue sections and surface labeling of single myocytes using flow cytometry. In muscle cross-sections, an intracellular polygonal, honeycomb-like CD97-staining pattern, typical for molecules located in the T-tubule or sarcoplasmatic reticulum (SR), was additionally found. CD97 co-localized with SR Ca2+-ATPase (SERCA), a constituent of the longitudinal SR, but not with the receptors for dihydropyridine (DHPR) or ryanodine (RYR), located in the T-tubule and terminal SR, respectively. Intracellular expression of CD97 was higher in slow-twitch compared to most fast-twitch myofibers. In rhabdomyosarcomas, CD97 was strongly upregulated and in part more N-glycosylated compared to normal skeletal muscle. All tumors were strongly CD97-positive, independent of the underlying histological subtype, suggesting high sensitivity of CD97 for this tumor. Ultrastructural analysis of murine skeletal myofibers confirmed the location of CD97 in the SR. CD97 knock-out mice had a dilated SR, resulting in a partial increase in triad diameter yet not affecting the T-tubule, sarcomeric, and mitochondrial structure. Despite these obvious ultrastructural changes, intracellular Ca2+ release from single myofibers, force generation and fatigability of isolated soleus muscles, and wheel-running capacity of mice were not affected by the lack of CD97. We conclude that CD97 is located in the SR and at the peripheral sarcolemma of human and murine skeletal muscle, where its absence affects the structure of the SR without impairing skeletal muscle function.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Pyruvate de sodium, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Caféine, anhydrous, 99%, FCC, FG
Sigma-Aldrich
Pyruvate de sodium, Hybri-Max, powder, suitable for hybridoma
USP
Caféine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Pyruvate de sodium, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Caféine, powder, ReagentPlus®
USP
Caféine, United States Pharmacopeia (USP) Reference Standard
Supelco
Caféine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Pyruvate de sodium, ReagentPlus®, ≥99%
Supelco
Caféine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Caféine, Sigma Reference Standard, vial of 250 mg
Supelco
Caféine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
Schmelzpunktstandard 235-237°C, analytical standard
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
Caféine, anhydrous, tested according to Ph. Eur.
Sigma-Aldrich
Caféine, meets USP testing specifications, anhydrous
Supelco
Caféine, traceable to primary standards (LGC)
Sigma-Aldrich
Pyruvate de sodium, BioXtra, ≥99%
Sigma-Aldrich
Caféine, BioXtra
Caféine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Pyruvate de sodium, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Caféine, European Pharmacopoeia (EP) Reference Standard