Accéder au contenu
MilliporeSigma

An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles.

Frontiers in microbiology (2021-08-27)
Tiffany R Frey, Ibukun A Akinyemi, Eric M Burton, Sumita Bhaduri-McIntosh, Michael T McIntosh
RÉSUMÉ

Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Doxycycline hyclate
Sigma-Aldrich
Puromycine dihydrochloride from Streptomyces alboniger, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Phorbol 12-myristate 13-acétate, ≥99% (TLC), film or powder
Millipore
ANTI-FLAG® antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Valproic acid sodium salt, 98%
Sigma-Aldrich
Butyrate de sodium, 98%
Sigma-Aldrich
5-Aza-2′-deoxycytidine, ≥97%
Sigma-Aldrich
Anti-Mouse IgG (whole molecule)–FITC antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anticorps de chèvre anti-IgG (chaînes H+L) de souris, conjugué à la HRP, 1 mg/mL, Chemicon®
Sigma-Aldrich
Anticorps de chèvre anti-IgG de lapin (chaînes H + L) conjugué à la HRP, 1 mg/mL, Chemicon®
Sigma-Aldrich
Iodure de propidium solution
Sigma-Aldrich
Anticorps anti-EA-D-p52/50 d'EBV, clone R3, clone R3, Chemicon®, from mouse
Sigma-Aldrich
Anti-EBNA2 Antibody, clone R3, clone R3, from rat
Sigma-Aldrich
Anticorps de contrôle négatif IgG1 de souris, clone 1E2.2, clone 1E2.2, 1 mg/mL, Chemicon®
Sigma-Aldrich
Rat IgG2a Negative Control, clone 2A3, Azide Free Antibody, clone 2A3, from rat, purified by affinity chromatography