Accéder au contenu
MilliporeSigma
Toutes les photos(4)

Principaux documents

237965

Sigma-Aldrich

Lithium fluoride

greener alternative

powder, -300 mesh

Synonyme(s) :

Fluorolithium

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
LiF
Numéro CAS:
Poids moléculaire :
25.94
Numéro CE :
Numéro MDL:
Code UNSPSC :
12352302
ID de substance PubChem :
Nomenclature NACRES :
NA.23

Qualité

for analytical purposes

Forme

powder

Caractéristiques du produit alternatif plus écologique

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

Taille des particules

-300 mesh

Pf

845 °C (lit.)

Densité

2.64 g/mL at 25 °C (lit.)

Autre catégorie plus écologique

Chaîne SMILES 

[Li+].[F-]

InChI

1S/FH.Li/h1H;/q;+1/p-1

Clé InChI

PQXKHYXIUOZZFA-UHFFFAOYSA-M

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Description générale

Lithium fluoride (LiF) is a highly versatile compound with a wide range of applications in research and development. Its unique physical and chemical properties make it suitable for use in optical components, battery technology, nuclear applications, ceramics, glasses, optoelectronics, metallurgy, thermoluminescent dosimeters, catalysis, environmental research, and biomedical applications.

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

Application

Lithium Fluoride (LiF) can be used as an additive in electrolytes for lithium-ion batteries to enhance thermal stability and overall battery performance. Applied as a thin film on electrodes to improve their stability and lifespan by preventing degradation during cycling. LiF is a crucial component of the anode interface film due to its high-modulus shell, which can prevent LixSi pulverization, and its high chemical stability, which effectively suppresses side reactions at the interface. LiF is used in nuclear reactors and radiation detectors due to its low neutron cross-section and ability to capture neutrons, making it suitable for neutron shielding and detection.

Lithium fluoride (LiF) can be used as a sintering aid that facilitates the etching of spinel particles for the degradation of magnesium aluminum spinel. It can be used in the preparation of carbon-iron LiF nanocomposite based electrode materials for lithium-ion batteries. It can also form thin interlayers on the counter electrode to enhance the fill factor and stabilize the high open-circuit voltages for polymer solar cells.

Pictogrammes

Exclamation mark

Mention d'avertissement

Warning

Mentions de danger

Classification des risques

Acute Tox. 4 Oral - Eye Irrit. 2

Risques supp

Code de la classe de stockage

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

Classe de danger pour l'eau (WGK)

WGK 2

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable

Équipement de protection individuelle

Eyeshields, Faceshields, Gloves, type P2 (EN 143) respirator cartridges


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Effect of LiFmetal electrodes on the performance of plastic solar cells
Brabec CJ, et al.
Applied Physics Letters, 80(7), 1288-1290 (2002)
Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals
Bilski P and Marczewska B
Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions With Materials and Atoms, 392, 41-45 (2017)
A ferrocene-based carbon-iron lithium fluoride nanocomposite as a stable electrode material in lithium batteries
Prakash R, et al.
Journal of Materials Chemistry, 20(10), 1871-1876 (2010)
R Takam et al.
Radiation protection dosimetry, 150(1), 22-33 (2011-08-30)
(6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescent dosemeters (TLDs) were used for measurements of out-of-field photon and neutron doses produced by Varian iX linear accelerator. Both TLDs were calibrated using 18-MV X-ray beam to investigate their dose-response sensitivity and linearity. CR-39 etch-track
Thorsten Grünheid et al.
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 141(4), 436-443 (2012-04-03)
Cone-beam computed tomography (CBCT) has become a routine imaging modality for many orthodontic clinics. However, questions remain about the amount of radiation patients are exposed to during the scans. This study determined the amounts of radiation potentially absorbed by a

Articles

Professor Gogotsi and Dr. Shuck introduce MXenes: a promising family of two-dimensional materials with a unique combination of high conductivity, hydrophilicity, and extensive tunability.

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Lithium-Ion Battery Performance: Dependence on Material Synthesis and Post‑Treatment Methods

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique