Accéder au contenu
MilliporeSigma
Toutes les photos(3)

Key Documents

205133

Sigma-Aldrich

Praseodymium(III) nitrate hexahydrate

99.9% trace metals basis

Synonyme(s) :

Praseodymium trinitrate hexahydrate

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
Pr(NO3)3·6H2O
Numéro CAS:
Poids moléculaire :
435.01
Numéro CE :
Numéro MDL:
Code UNSPSC :
12352302
ID de substance PubChem :
Nomenclature NACRES :
NA.23

Niveau de qualité

Pureté

99.9% trace metals basis

Forme

crystalline

Pertinence de la réaction

reagent type: catalyst
core: praseodymium

Impuretés

≤2000 ppm Trace Metal Analysis

Chaîne SMILES 

O.O.O.O.O.O.[Pr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O

InChI

1S/3NO3.6H2O.Pr/c3*2-1(3)4;;;;;;;/h;;;6*1H2;/q3*-1;;;;;;;+3

Clé InChI

LXXCECZPOWZKLC-UHFFFAOYSA-N

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Description générale

Praseodymium(III) nitrate hexahydrate iscommonly used in the production of electronic components, including ceramiccapacitors, magnetic bubble memories, and photochromic glass. Its uniqueoptical and electrical properties, such as its high dielectric constant andrefractive index, make it a desirable material in the electronics industry. Itis also used as a praseodymium source for the preparation of other praseodymiumcompounds.

Application

Praseodymium(III) nitrate hexahydrate can be used as:
  • A dopant to fabricate dye-sensitized solar cells. The addition of rare earth enhances the power conversion efficiency of solar cells by narrowing the band gap of photoanode materials.
  • A precursor to synthesize high entropy lanthanide oxysulfides ( wide band gap semiconductors).
  • To synthesize functionalized UV-emitting nanocomposite for photodynamic cancer therapy.
  • To fabricate Pr-doped MoO3 thinfilms for gas sensing applications.

Pictogrammes

Flame over circleExclamation markEnvironment

Mention d'avertissement

Warning

Mentions de danger

Classification des risques

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Ox. Sol. 3 - Skin Irrit. 2

Code de la classe de stockage

5.1B - Oxidizing hazardous materials

Classe de danger pour l'eau (WGK)

WGK 2

Équipement de protection individuelle

dust mask type N95 (US), Eyeshields, Gloves, type P3 (EN 143) respirator cartridges


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites
Maham Khan, et al.
Scientific Reports, 13, 3123-3123 (2023)
Jonas Scholz et al.
Journal of colloid and interface science, 504, 346-355 (2017-06-06)
The formation of perovskite oxide nanoparticles supported on ordered mesoporous silica with different pore geometry is here presented. Systematic study was performed varying both pore shape (gyroidal, cylindrical, spherical) and size (7.5, 12, 17nm) of the hosts. LaFeO
De Smet, F. et al.
Chemistry of Materials, 11, 324-324 (1999)
Yu, S-H. et al.
Chemistry of Materials, 11, 192-192 (1999)
Devaraj Ramasamy et al.
Physical chemistry chemical physics : PCCP, 17(17), 11527-11539 (2015-04-11)
The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in

Articles

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

The rare earth elements impact nearly everyone in the world. All of the people living in advanced technological countries and almost all those living in third world countries utilize the rare earths in their everyday living—the car that one drives (gasoline is refined from oil using rare earth catalysts and catalytic converters reduce the polluting emissions from the automotive exhaust), watching the news on TV (the red and green colors in TV screens), the telephones and computers we use to communicate (the permanent magnets in speakers and disc drives), just to name a few examples.

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique