Accéder au contenu
MilliporeSigma
Toutes les photos(2)

Principaux documents

202991

Sigma-Aldrich

Cerium(III) nitrate hexahydrate

99.999% trace metals basis

Synonyme(s) :

Cerium trinitrate, Cerous nitrate hexahydrate, Nitric acid cerium salt

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
Ce(NO3)3 · 6H2O
Numéro CAS:
Poids moléculaire :
434.22
Numéro CE :
Numéro MDL:
Code UNSPSC :
12352302
ID de substance PubChem :
Nomenclature NACRES :
NA.23

Niveau de qualité

Pureté

99.999% trace metals basis

Forme

crystals and lumps

Pertinence de la réaction

reagent type: catalyst
core: cerium

Impuretés

≤15.0 ppm Trace Metal Analysis

Chaîne SMILES 

[Ce+3].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O

InChI

1S/Ce.3NO3.6H2O/c;3*2-1(3)4;;;;;;/h;;;;6*1H2/q+3;3*-1;;;;;;

Clé InChI

QQZMWMKOWKGPQY-UHFFFAOYSA-N

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Description générale

Cerium (III) nitrate hexahydrate is a widely used source of cerium in materials science. It is a white-to-yellow crystalline salt that is hygroscopic and air-sensitive. It is highly soluble in water, alcohol, and acetone, although solutions can appear slightly hazy. Like many trivalent metal nitrates, cerium (III) nitrate hexahydrate melts at a low temperature (57 °C)and thermally decomposes at low temperatures too, beginning at 190 °C and proceeding rapidly at 280 °C with complete decomposition to cerium oxide at 390-400 °C.

Application

Cerium (III) nitrate hexahydrate is widely used as a source of cerium, especially in the synthesis of micro- or nano-structured ceria (cerium oxide). Because of its high solubility and low decomposition temperature, cerium (III) nitrate hexahydrate is an ideal reagent for hydrothermal reactions, sol-gel processing, and co-precipitation and calcination reactions. Our cerium (III) nitrate hexahydrate 99.999% is designed for applications that demand high-purity cerium with low contaminants of other trace metals and rare earth metals. For example, high-purity cerium nitrate is applicable in studies using cerium (III) nitrate hexahydrate used to dope catalysts, such as recent efforts to boost water splitting using Ce-doped layered double hydroxides . It is also applicable in studies using cerium (III)nitrate hexahydrate to build a ceria support for single-atom catalysts, such as nickel-doped ceria for the hydrogenation of acetylene and platinum-doped ceria for carbon monoxide oxidation. Our high-purity cerium (III) nitrate hexahydrate is also in the solid-state synthesis of cerium-doped phosphors like Ca2YHf2Al3O12 where energy transfer from Ce3+ to other rare earth ions plays a major role in the efficiency and breadth of excitations.

Pictogrammes

CorrosionEnvironment

Mention d'avertissement

Danger

Mentions de danger

Classification des risques

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1

Code de la classe de stockage

5.1B - Oxidizing hazardous materials

Classe de danger pour l'eau (WGK)

WGK 2

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable

Équipement de protection individuelle

Eyeshields, Gloves, type P3 (EN 143) respirator cartridges


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

John Jones et al.
Science (New York, N.Y.), 353(6295), 150-154 (2016-07-09)
Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures
Huajie Xu et al.
ACS applied materials & interfaces, 10(7), 6336-6345 (2018-02-01)
Developing convenient doping to build highly active oxygen evolution reaction (OER) electrocatalysts is a practical process for solving the energy crisis. Herein, a facile and low-cost in situ self-assembly strategy for preparing a Ce-doped NiFe-LDH nanosheets/nanocarbon (denoted as NiFeCe-LDH/CNT, LDH
Eleonora Venezia et al.
Nanomaterials (Basel, Switzerland), 9(4) (2019-04-27)
An important segment of the future renewable energy economy is the implementation of novel energy generation systems. Such electrochemical systems are solid oxide fuel cells, which have the advantage of direct conversion of the chemical energy stored in the fuel
Pratik P Dholabhai et al.
Physical chemistry chemical physics : PCCP, 17(23), 15375-15385 (2015-05-23)
Grain boundaries (GBs) dictate vital properties of nanocrystalline doped ceria. Thus, to understand and predict its properties, knowledge of the interaction between dopant-defect complexes and GBs is crucial. Here, we report atomistic simulations, corroborated with first principles calculations, elucidating the
Martha Cobo et al.
Journal of environmental management, 158, 1-10 (2015-05-02)
The catalytic hydrodechlorination (HDC) of high concentrations of trichloroethylene (TCE) (4.9 mol%, 11.6 vol%) was studied over 1%Pd, 1%Rh and 0.5%Pd-0.5%Rh catalysts supported on CeO2 under conditions of room temperature and pressure. For this, a one-phase system of NaOH/2-propanol/methanol/water was designed

Articles

Spectral conversion for solar cells is an emerging concept in the field of photovoltaics, and it has the potential to increase significantly the efficiency of solar cells. Lanthanide ions are ideal candidates for spectral conversion, due to their high luminescence efficiencies and rich energy level structure that allows for great flexibility in the upconversion and downconversion of photons in a wide spectral region (NIR-VIS-UV).

The rare earth elements impact nearly everyone in the world. All of the people living in advanced technological countries and almost all those living in third world countries utilize the rare earths in their everyday living—the car that one drives (gasoline is refined from oil using rare earth catalysts and catalytic converters reduce the polluting emissions from the automotive exhaust), watching the news on TV (the red and green colors in TV screens), the telephones and computers we use to communicate (the permanent magnets in speakers and disc drives), just to name a few examples.

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique