Skip to Content
MilliporeSigma
  • Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics.

Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics.

Proteome science (2014-10-25)
Stefania Ghisaura, Roberto Anedda, Daniela Pagnozzi, Grazia Biosa, Simona Spada, Elia Bonaglini, Roberto Cappuccinelli, Tonina Roggio, Sergio Uzzau, Maria Filippa Addis
ABSTRACT

The zootechnical performance of three different commercial feeds and their impact on liver and serum proteins of gilthead sea bream (Sparus aurata, L.) were assessed in a 12 week feeding trial. The three feeds, named A, B, and C, were subjected to lipid and protein characterization by gas chromatography (GC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Feed B was higher in fish-derived lipids and proteins, while feeds C and A were higher in vegetable components, although the largest proportion of feed C proteins was represented by pig hemoglobin. According to biometric measurements, the feeds had significantly different impacts on fish growth, producing a higher average weight gain and a lower liver somatic index in feed B over feeds A and C, respectively. 2D DIGE/MS analysis of liver tissue and Ingenuity pathways analysis (IPA) highlighted differential changes in proteins involved in key metabolic pathways of liver, spanning carbohydrate, lipid, protein, and oxidative metabolism. In addition, serum proteomics revealed interesting changes in apolipoproteins, transferrin, warm temperature acclimation-related 65 kDa protein (Wap65), fibrinogen, F-type lectin, and alpha-1-antitrypsin. This study highlights the contribution of proteomics for understanding and improving the metabolic compatibility of feeds for marine aquaculture, and opens new perspectives for its monitoring with serological tests.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Methionine, European Pharmacopoeia (EP) Reference Standard
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Supelco
Urea, analytical standard
Pidolic acid, European Pharmacopoeia (EP) Reference Standard
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
DL-Methionine, European Pharmacopoeia (EP) Reference Standard
Urea, European Pharmacopoeia (EP) Reference Standard
USP
Urea, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Urea, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
DL-Methionine, ≥99.0% (NT)
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%