Skip to Content
MilliporeSigma
All Photos(1)

Documents

SML1949

Sigma-Aldrich

Synta66

≥98% (HPLC)

Synonym(s):

4-Pyridinecarboxamide, N-(2′,5′-dimethoxy[1,1′-biphenyl]-4-yl)-3-fluoro-, GSK1349571A, N-(2′,5′-Dimethoxy[1,1′-biphenyl]-4-yl)-3-fluoro-4-pyridinecarboxamide, S66, Synta 66, Synta-66

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C20H17FN2O3
CAS Number:
Molecular Weight:
352.36
UNSPSC Code:
12352200
NACRES:
NA.77

Quality Level

Assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 20 mg/mL, clear

storage temp.

2-8°C

SMILES string

O=C(NC1=CC=C(C2=C(OC)C=CC(OC)=C2)C=C1)C3=CC=NC=C3F

Application

Synta66 has been used:
  • as a Ca2+ release-activated calcium (CRAC) channel inhibitor to study its effects on ORAI isoforms
  • as an ORAI1 blocker to study its effects on the entry of Ca2+ in chronic lymphocytic leukemia (CLL) B cells
  • as a CRAC blocker to study its effects on the influx of Ca2+ by store-operated Ca2+ entry (SOCE) in enamel cells

Biochem/physiol Actions

Synta66 (S66) is a CRAC (Ca2+ release-activated Ca2+) channel inhibitor that blocks SOCE (store-operated Ca2+ entry) upon Ca2+ depletion from intracellular stores by thapsigargin in human vascular smooth muscle cells (VSMCs) with high potency (IC50 = 26 nM & 43 nM based on maximum Ca2+ level & rate of increase, respectly). Synta66 exhibits no affinity toward a range of receptors and ion channels (e.g. L-type Ca2+ channel) and does not affect TRPC1/5-mediated SOCE or store-operated non-selective cationic current. Leukocytes are reported to be less sensitive to CRAC inhibition by Synta66 (IC50 = 1.76 μM/HL-60, 1 ?M/Jurkat, 1.4 μM/rat RBL).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Antonio Di Sabatino et al.
Journal of immunology (Baltimore, Md. : 1950), 183(5), 3454-3462 (2009-08-04)
Prolonged Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels is crucial in activating the Ca(2+)-sensitive transcription factor NFAT, which is responsible for directing T cell proliferation and cytokine gene expression. To establish whether targeting CRAC might counteract intestinal inflammation, we
Siaw Wei Ng et al.
The Journal of biological chemistry, 283(46), 31348-31355 (2008-09-23)
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and
Jing Li et al.
British journal of pharmacology, 164(2), 382-393 (2011-05-07)
The aim was to advance the understanding of Orai proteins and identify a specific inhibitor of the associated calcium entry mechanism in vascular smooth muscle cells (VSMCs). Proliferating VSMCs were cultured from human saphenous veins. Intracellular calcium was measured using
Xuexin Zhang et al.
Cell calcium, 91, 102281-102281 (2020-09-09)
The ubiquitous Ca2+ release-activated Ca2+ (CRAC) channel is crucial to many physiological functions. Both gain and loss of CRAC function is linked to disease. While ORAI1 is a crucial subunit of CRAC channels, recent evidence suggests that ORAI2 and ORAI3

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service