Pular para o conteúdo
Merck

Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice.

Hypertension research : official journal of the Japanese Society of Hypertension (2014-06-27)
Xia Cao, Tao Luo, Xi Luo, Zhiyi Tang
RESUMO

The purpose of this study was to determine the effects of resveratrol (RSV) and the molecular mechanisms by which it regulates vascular smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells (VSMCs), we found that the activation of AMP-activated protein kinase (AMPK) by RSV inhibited angiotensin II (AngII)-induced phosphorylation of myosin phosphatase-targeting subunit 1 (MYPT1) and myosin light chain (MLC). Inversely, AMPK inhibition with RNA interference and compound C, an AMPK inhibitor, abolished the inhibitory effect of RSV on AngII-induced MYPT1 and MLC phosphorylation. Thiazovivin, a Rho-associated kinase (ROCK) inhibitor, reversed AngII-induced MYPT1 and MLC phosphorylation, suggesting that ROCK functions as an upstream kinase for MYPT1/MLC. RSV reversed AngII-induced Ras homolog gene family member A (RhoA) and ROCK activity, whereas AMPK inhibition via pharmacological or genetic means abolished this effect. In addition, gene silencing of p190-guanosine triphosphatase-activating protein blocked the effects of RSV-induced AMPK activation on MLC, MYPT1 and RhoA in VSMCs. Ex vivo analyses demonstrated that AngII-induced aorta contractions were dramatically inhibited by RSV, and this effect was abolished by AMPK inhibition. Finally, daily chronic administration of RSVl alleviated hypertension in the experimental model of AngII-induced hypertensive mice, and these effects were accompanied by the activation of AMPK, significantly decreased RhoA activity and phosphorylation levels of MYPT1 and MLC in AngII-treated murine aortic VSMCs. More importantly, administration of compound C significantly abolished the effects of RSV. In conclusion, AMPK suppression of the p190-GAP-dependent RhoA/ROCK/MYPT1/MLC pathway contributes to the hypotensive effect of RSV in AngII-treated mice.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Fosfato de potássio, ACS reagent, ≥99.0%
Sigma-Aldrich
Bicarbonato de sódio, ACS reagent, ≥99.7%
Sigma-Aldrich
Bicarbonato de sódio, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Bicarbonato de sódio, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
Fosfato de potássio, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Fosfato de potássio, buffer substance, anhydrous, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 99.5-100.5%
Sigma-Aldrich
Bicarbonato de sódio, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
Fosfato de potássio, for molecular biology, ≥98.0%
Sigma-Aldrich
Fosfato de potássio, meets analytical specification of Ph. Eur., NF, E340, anhydrous, 98-100.5% (calc. to the dried substance)
Sigma-Aldrich
Bicarbonato de sódio, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E500, 99.0-100.5%, powder
Sigma-Aldrich
Fosfato de potássio, BioUltra, for molecular biology, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Fosfato de potássio, ReagentPlus®
Sigma-Aldrich
Bicarbonato de sódio, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Fosfato de potássio, 99.99% trace metals basis
Sigma-Aldrich
Bicarbonato de sódio, BioXtra, 99.5-100.5%
Sigma-Aldrich
Bicarbonato de sódio, −40-+140 mesh, ≥95%
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Fosfato de potássio, tested according to Ph. Eur., anhydrous
Supelco
Fosfato de potássio, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Bicarbonato de sódio, tested according to Ph. Eur.
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Prkaa2
Sigma-Aldrich
MISSION® esiRNA, targeting human PRKAA2