Pular para o conteúdo
Merck

Innate immunity drives xenobiotic-induced murine autoimmune cholangitis.

Clinical and experimental immunology (2014-02-20)
C-H Chang, Y-C Chen, Y-H Yu, M-H Tao, P S C Leung, A A Ansari, M E Gershwin, Y-H Chuang
RESUMO

Although primary biliary cirrhosis (PBC) is considered a model autoimmune disease, it has not responded therapeutically to traditional immunosuppressive agents. In addition, PBC may recur following liver transplantation, despite the absence of major histocompatibility complex (MHC) matching, in sharp contrast to the well-known paradigm of MHC restriction. We have suggested previously that invariant natural killer T (iNK T) cells are critical to the initiation of PBC. In this study we have taken advantage of our ability to induce autoimmune cholangitis with 2-octynoic acid, a common component of cosmetics, conjugated to bovine serum albumin (2-OA-BSA), and studied the natural history of pathology in mice genetically deleted for CD4 or CD8 following immunization with 2-OA-BSA in the presence or absence of α-galactosylceramide (α-GalCer). In particular, we address whether autoimmune cholangitis can be induced in the absence of traditional CD4 and CD8 responses. We report herein that CD4 and CD8 knock-out mice immunized with 2-OA-BSA/PBS or 2-OA-BSA/α-GalCer develop anti-mitochondrial antibodies (AMAs), portal infiltrates and fibrosis. Indeed, our data suggest that the innate immunity is critical for immunopathology and that the pathology is exacerbated in the presence of α-GalCer. In conclusion, these data provide not only an explanation for the recurrence of PBC following liver transplantation in the absence of MHC compatibility, but also suggest that effective therapies for PBC must include blocking of both innate and adaptive pathways.