Pular para o conteúdo
Merck
  • Estimating marbofloxacin withdrawal time in broiler chickens using a population physiologically based pharmacokinetics model.

Estimating marbofloxacin withdrawal time in broiler chickens using a population physiologically based pharmacokinetics model.

Journal of veterinary pharmacology and therapeutics (2014-06-07)
F Yang, Y R Yang, L Wang, X H Huang, G Qiao, Z L Zeng
RESUMO

Residue depletion of marbofloxacin in broiler chicken after oral administration at 5 mg/kg/day for three consecutive days was studied in this study. The areas under the concentration-time curve from 0 h to ∞ (AUC0-∞ s) of marbofloxacin in tissues and plasma were used to calculate tissue/plasma partition coefficients (PX s). Based on PX s and the other parameters derived from published studies, a flow-limited physiologically based pharmacokinetics (PBPK) model was developed to predict marbofloxacin concentrations, which were then compared with those derived from the residue depletion study so as to validate this model. Considering individual difference in drug disposition, a Monte Carlo simulation included 1000 iterations was further incorporated into the validated model to generate a population PBPK model and to estimate the marbofloxacin residue withdrawal times in edible tissues. The withdrawal periods were compared to those derived from linear regression analysis. The PBPK model presented here successfully predicted the measured concentrations in all tissues. The withdrawal times in all edible tissues derived from the population PBPK model were longer than those from linear regression analysis, and based on the residues in kidney, a withdrawal time of 4 days was estimated for marbofloxacin after oral administration at 5 mg/kg/day for three consecutive days. It was shown that population PBPK model could be used to accurately predict marbofloxacin residue withdrawal time in edible tissues in broiler chickens.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Ácido fórmico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Ácido fórmico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Ácido fórmico, ≥95%, FCC, FG
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Supelco
Acetonitrilo, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrilo, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrilo, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Acetonitrilo, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
Acetonitrilo, analytical standard
Sigma-Aldrich
Acetonitrilo, ≥99.5% (GC)
Supelco
Marbofloxacin, VETRANAL®, analytical standard