Pular para o conteúdo
Merck

Encapsulation, with high efficiency, of radioactive metal ions in liposomes.

Biochimica et biophysica acta (1982-05-05)
K J Hwang, J E Merriam, P L Beaumier, K F Luk
RESUMO

The encapsulation of radioactive metalic cations, such as 111In3+ or 67Ga3+, in the internal aqueous compartment of liposomes can be achieved with an efficiency of about 90%. The efficient loading of a high specific activity of cations into liposomes involves the transport of 111In3+ or 67Ga3+ through the lipid bilayer to an encapsulated strong chelate, such as nitrilotriacetic acid, by 8-hydroxyquinoline, in conjunction with an efficient anion-exchange resin technique for the removal of the external cations. The efficiency of loading cations to liposomes is affected markedly by the concentration of 8-hydroxyquinoline-metal, and the presence of the chelating agents in the loading incubation mixture. However, the loading efficiency is not affected by the pH of the internal aqueous compartment of liposomes over a range of pH 5-9, the concentration of the liposomes, the method of liposomal preparation, the lamellar structure of the liposomes, and the composition of liposomes. Furthermore, the loading procedures do not appear to affect the size and the permeability of liposomes. There is a good agreement in the tissue distributions of the liposomes prepared by the present loading methods and those by the conventional method of encapsulation by sonication. Liposomes entrapping high specific activity of 67Ga3+ or 111In3+ will be useful for future studies of the in vivo kinetics of liposomes by the combined techniques of scintigraphic imaging and the gamma-ray perturbed angular correlation.