Pular para o conteúdo
Merck
  • Several lines of evidence demonstrating that Plasmodium falciparum, a parasitic organism, has distinct enzymes for the phosphorylation of choline and ethanolamine.

Several lines of evidence demonstrating that Plasmodium falciparum, a parasitic organism, has distinct enzymes for the phosphorylation of choline and ethanolamine.

FEBS letters (1986-07-07)
M L Ancelin, H J Vial
RESUMO

In Plasmodium falciparum-infected erythrocyte homogenates, the specific activity of ethanolamine kinase (7.6 +/- 1.4 nmol phosphoethanolamine/10(7) infected cells per h) was higher than choline kinase specific activity (1.9 +/- 0.2 nmol phosphocholine/10(7) infected cells per h). The Km of choline kinase for choline was 79 +/- 20 microM, and ethanolamine was a weak competitive inhibitor of the reaction (Ki = 92 mM). Ethanolamine kinase had a Km for ethanolamine of 188 +/- 19 microM, and choline was a competitive inhibitor of ethanolamine kinase with a very high Ki of 268 mM. Hemicholinium 3 inhibited choline kinase activity, but had no effect on ethanolamine kinase activity. In contrast, D-2-amino-1-butanol selectively inhibited ethanolamine kinase activity. Furthermore, when the two enzymes were subjected to heat inactivation, 85% of the choline kinase activity was destroyed after 5 min at 50 degrees C, whereas ethanolamine kinase activity was not altered. Our results indicate that the phosphorylation of choline and ethanolamine was catalyzed by two distinct enzymes. The presence of a de novo phosphatidylethanolamine Kennedy pathway in P. falciparum contributes to the bewildering variety of phospholipid biosynthetic pathways in this parasitic organism.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
2-Amino-1-butanol, 97%