Pular para o conteúdo
Merck
  • Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

Scientific reports (2012-08-23)
Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E Moser, Michael Grätzel, Nam-Gyu Park
RESUMO

We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Calcium titanate, nanopowder, <100 nm particle size (BET), 99% trace metals basis