Pular para o conteúdo
Merck

A functional three-dimensional microphysiological human model of myeloma bone disease.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2021-06-27)
Richard J Visconti, Kyle Kolaja, Jessica A Cottrell
RESUMO

Human myeloma bone disease (MBD) occurs when malignant plasma cells migrate to the bone marrow and commence inimical interactions with stromal cells, disrupting the skeletal remodeling process. The myeloma cells simultaneously suppress osteoblastic bone formation while promoting excessive osteoclastic resorption. This bone metabolism imbalance produces osteolytic lesions that cause chronic bone pain and reduce trabecular and cortical bone structural integrity, and often culminate in pathological fractures. Few bone models exist that enable scientists to study MBD and the effect therapies have on restoring the bone metabolism imbalance. The purpose of this research was to develop a well characterized three-dimensional (3D) bone organoid that could be used to study MBD and current or potential treatment options. First, bone marrow stromal cell-derived osteoblasts (OBs) mineralized an endosteal-like extracellular matrix (ECM) over 21 days. Multiple analyses confirmed the generation of hydroxyapatite (HA)-rich bone-like tissue fragments that were abundant in alkaline phosphatase, calcium, and markers of osteoblastic gene expression. On day 22, bone marrow macrophage (BMM)-derived osteoclasts (OCs) were introduced to enhance the resorptive capability of the model and recapitulate the balanced homeostatic nature of skeletal remodeling. Tartrate-resistant acid phosphatase 5b (TRAcP-5b), type I collagen C-telopeptide (CTX-1), and gene expression analysis confirmed OC activity in the normal 3D organoid (3D in vitro model of normal bonelike fragments [3D-NBF]). On day 30, a human multiple myeloma (MM)-derived plasmacytoma cell line was introduced to the 3D-NBF to generate the 3D-myeloma bone disease organoid (3D-MBD). After 12 days, the 3D-MBD had significantly reduced total HA, increased TRAcP-5b levels, increases levels of CTX-1, and decreased expression of osteoblastic genes. Therapeutic intervention with pharmaceutical agents including an immunomodulatory drug, a bisphosphonate, and monoclonal restored HA content and reduced free CTX-1 in a dose-dependent manner. This osteogenically functional model of MBD provides a novel tool to study biological mechanisms guiding the disease and to screen potential therapeutics. © 2021 American Society for Bone and Mineral Research (ASBMR).

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Anti-Sclerostin Antibody, clone 7B6.1 | MABS445, culture supernatant, clone 7B6.1, from mouse