Pular para o conteúdo
Merck
  • Nuclear receptor Ftz-f1 promotes follicle maturation and ovulation partly via bHLH/PAS transcription factor Sim.

Nuclear receptor Ftz-f1 promotes follicle maturation and ovulation partly via bHLH/PAS transcription factor Sim.

eLife (2020-04-28)
Elizabeth M Knapp, Wei Li, Vijender Singh, Jianjun Sun
RESUMO

The NR5A-family nuclear receptors are highly conserved and function within the somatic follicle cells of the ovary to regulate folliculogenesis and ovulation in mammals; however, their roles in Drosophila ovaries are largely unknown. Here, we discover that Ftz-f1, one of the NR5A nuclear receptors in Drosophila, is transiently induced in follicle cells in late stages of oogenesis via ecdysteroid signaling. Genetic disruption of Ftz-f1 expression prevents follicle cell differentiation into the final maturation stage, which leads to anovulation. In addition, we demonstrate that the bHLH/PAS transcription factor Single-minded (Sim) acts as a direct target of Ftz-f1 to promote follicle cell differentiation/maturation and that Ftz-f1's role in regulating Sim expression and follicle cell differentiation can be replaced by its mouse homolog steroidogenic factor 1 (mSF-1). Our work provides new insight into the regulation of follicle maturation in Drosophila and the conserved role of NR5A nuclear receptors in regulating folliculogenesis and ovulation.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
ANTI-FLAG® M2 monoclonal, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Mouse IgG1 Negative Control, clone Ci4, Mouse IgG1 Negative Control Monoclonal Antibody validated for use in Flow Cytometry & Immunofluorescence.