Pular para o conteúdo
Merck
  • Protonophoric activity of ellipticine and isomers across the energy-transducing membrane of mitochondria.

Protonophoric activity of ellipticine and isomers across the energy-transducing membrane of mitochondria.

The Journal of biological chemistry (1995-09-29)
M A Schwaller, B Allard, E Lescot, F Moreau
RESUMO

Ellipticine is an antitumor alkaloid capable of uncoupling mitochondrial oxidative phosphorylation. It behaves as a lipophilic weak base with pK = 7.40. We have investigated its molecular mode of action using several of its isomers with pK ranging between 5.8 and 7.7 and ellipticinium, which is a permanent cationic derivative. The effects of these molecules on mitochondrial oxygen uptake and transmembrane potential were compared at different pHs. Ellipticinium exhibited very low effects on both respiratory rate and membrane potential. By contrast, protonable derivatives showed maximal stimulation of oxygen uptake and depolarizing effects when the pH of the medium was close to the drug pK. These effects were lowered when the transmembrane delta pH was dissipated, which indicates that the neutral form of the drug is implicated in the uncoupling mechanism. In addition, protonable derivatives of ellipticine display a linear relationship between oxidation rate and transmembrane potential, which suggests that the uncoupling properties of these molecules result from a protonophoric mechanism. From these results, the following cyclic protonophoric mechanism is proposed for protonable ellipticines: (i) electrophoretical accumulation of the protonated form; (ii) deprotonation at the matrix interface; (iii) diffusion outwards; and (iv) reprotonation at the external interface.