Accéder au contenu
Merck

3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells.

Journal of the mechanical behavior of biomedical materials (2017-07-25)
Lorenzo Vannozzi, Leonardo Ricotti, Tommaso Santaniello, Tercio Terencio, Reinier Oropesa-Nunez, Claudio Canale, Francesca Borghi, Arianna Menciassi, Cristina Lenardi, Irini Gerges
RÉSUMÉ

The fabrication of biomaterials for interaction with muscle cells has attracted significant interest in the last decades. However, 3D porous scaffolds featured by a relatively low stiffness (almost matching the natural muscle one) and highly stable in response to cyclic loadings are not available at present, in this context. This work describes 3D polyurethane-based porous scaffolds featured by different mechanical properties. Biomaterial stiffness was finely tuned by varying the cross-linking degree of the starting foam. Compression tests revealed, for the softest material formulation, stiffness values close to the ones possessed by natural skeletal muscles. The materials were also characterized in terms of local nanoindenting, rheometric properties and long-term stability through cyclic compressions, in a strain range reflecting the contraction extent of natural muscles. Preliminary in vitro tests revealed a preferential adhesion of C2C12 skeletal muscle cells over the softer, rougher and more porous structures. All the material formulations showed low cytotoxicity.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Calcium stearate, 6.6-7.4% Ca basis