Accéder au contenu
Merck

Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease.

Disease models & mechanisms (2014-05-09)
Suvi Vartiainen, Shanjun Chen, Jack George, Tea Tuomela, Kaisa R Luoto, Kevin M C O'Dell, Howard T Jacobs
RÉSUMÉ

A point mutation in the Drosophila gene that codes for the major adult isoform of adenine nuclear translocase (ANT) represents a model for human diseases that are associated with ANT insufficiency [stress-sensitive B(1) (sesB(1))]. We characterized the organismal, bioenergetic and molecular phenotype of sesB(1) flies then tested strategies to compensate the mutant phenotype. In addition to developmental delay and mechanical-stress-induced seizures, sesB(1) flies have an impaired response to sound, defective male courtship, female sterility and curtailed lifespan. These phenotypes, excluding the latter two, are shared with the mitoribosomal protein S12 mutant, tko(25t). Mitochondria from sesB(1) adults showed a decreased respiratory control ratio and downregulation of cytochrome oxidase. sesB(1) adults exhibited ATP depletion, lactate accumulation and changes in gene expression that were consistent with a metabolic shift towards glycolysis, characterized by activation of lactate dehydrogenase and anaplerotic pathways. Females also showed downregulation of many genes that are required for oogenesis, and their eggs, although fertilized, failed to develop to the larval stages. The sesB(1) phenotypes of developmental delay and mechanical-stress-induced seizures were alleviated by an altered mitochondrial DNA background. Female sterility was substantially rescued by somatic expression of alternative oxidase (AOX) from the sea squirt Ciona intestinalis, whereas AOX did not alleviate developmental delay. Our findings illustrate the potential of different therapeutic strategies for ANT-linked diseases, based on alleviating metabolic stress.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Phosphate de potassium monobasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Phosphate de potassium monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Phosphate de potassium monobasic, for molecular biology, ≥98.0%
Sigma-Aldrich
Phosphate de potassium monobasic, ReagentPlus®
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Chlorure de sodium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Chlorure de sodium, 99.999% trace metals basis
Sigma-Aldrich
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Chlorure de sodium, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Phosphate de potassium monobasic, 99.99% trace metals basis
Sigma-Aldrich
Phosphate de potassium monobasic, BioUltra, for molecular biology, anhydrous, ≥99.5% (T)
Supelco
Chlorure de sodium, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Chlorure de sodium, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Chlorure de sodium, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
Phosphate de potassium monobasic, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phosphate de potassium monobasic, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Chlorure de sodium, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl