Accéder au contenu
Merck
  • 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogues, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide.

2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogues, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide.

Chemical research in toxicology (2010-01-07)
K Leslie Powell, Stephen Boulware, Howard Thames, Karen M Vasquez, Michael C MacLeod
RÉSUMÉ

Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well-known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic because of its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogues of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes the mutagenesis induced by CEMS and CEES in human cells.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
2-Chloroethyl methyl sulfide, 97%